PatchNR: learning from very few images by patch normalizing flow regularization F Altekrüger, A Denker, P Hagemann, J Hertrich, P Maass, G Steidl Inverse Problems 39 (6), 064006, 2023 | 21* | 2023 |
WPPNets and WPPFlows: The power of Wasserstein patch priors for superresolution F Altekrüger, J Hertrich SIAM Journal on Imaging Sciences 16 (3), 1033-1067, 2023 | 16 | 2023 |
Neural Wasserstein Gradient Flows for Discrepancies with Riesz Kernels F Altekrüger, J Hertrich, G Steidl International Conference on Machine Learning (ICML) 2023, 2023 | 15* | 2023 |
Posterior sampling based on gradient flows of the MMD with negative distance kernel P Hagemann, J Hertrich, F Altekrüger, R Beinert, J Chemseddine, G Steidl International Conference on Learning Representations (ICLR) 2024, 2024 | 10 | 2024 |
Conditional generative models are provably robust: Pointwise guarantees for bayesian inverse problems F Altekrüger, P Hagemann, G Steidl Transactions on Machine Learning Research (TMLR), 2023 | 10 | 2023 |
Generative sliced MMD flows with Riesz kernels J Hertrich, C Wald, F Altekrüger, P Hagemann International Conference on Learning Representations (ICLR) 2024, 2024 | 9 | 2024 |
Learning regularization parameter-maps for variational image reconstruction using deep neural networks and algorithm unrolling A Kofler, F Altekrüger, F Antarou Ba, C Kolbitsch, E Papoutsellis, D Schote, ... SIAM Journal on Imaging Sciences 16 (4), 2202-2246, 2023 | 9 | 2023 |
Stability of Data-Dependent Ridge-Regularization for Inverse Problems S Neumayer, F Altekrüger arXiv preprint arXiv:2406.12289, 2024 | 1 | 2024 |
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction M Piening, F Altekrüger, J Hertrich, P Hagemann, A Walther, G Steidl arXiv preprint arXiv:2312.16611, 2023 | 1 | 2023 |
Generative Modeling via Wasserstein Gradient flows of Maximum Mean Discrepancies P Hagemann, F Altekrüger, R Beinert, J Chemseddine, M Gräf, ... | | |