关注
Ying Li
Ying Li
Ph.D student, The University of Hong Kong (HKU)
在 connect.hku.hk 的电子邮件经过验证
标题
引用次数
引用次数
年份
Digital twin-aided learning to enable robust beamforming: Limited feedback meets deep generative models
Y Li, K Li, L Cheng, Q Shi, ZQ Luo
2021 IEEE 22nd International Workshop on Signal Processing Advances in …, 2021
102021
Learning enhanced beamforming vector from CQIs in 5G NR FDD massive MIMO systems: A tuning-free approach
K Li, Y Li, L Cheng, Q Shi, ZQ Luo
2021 IEEE 22nd International Workshop on Signal Processing Advances in …, 2021
72021
Downlink channel covariance matrix reconstruction for FDD massive MIMO systems with limited feedback
K Li, Y Li, L Cheng, Q Shi, ZQ Luo
IEEE Transactions on Signal Processing, 2024
42024
Pushing the limit of Type I codebook for FDD massive MIMO beamforming: A channel covariance reconstruction approach
K Li, Y Li, L Cheng, Q Shi, ZQ Luo
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and …, 2021
42021
Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian Process State-Space Models
Z Lin, J Maroñas, Y Li, F Yin, S Theodoridis
ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and …, 2024
32024
Overcoming Posterior Collapse in Variational Autoencoders Via EM-Type Training
Y Li, L Cheng, F Yin, MM Zhang, S Theodoridis
ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and …, 2023
22023
Enhancing Multi-Stream Beamforming Through CQIs For 5G NR FDD Massive MIMO Communications: A Tuning-Free Scheme
K Li, Y Li, L Cheng, ZQ Luo
IEEE Transactions on Wireless Communications, 2024
2024
Preventing Model Collapse in Gaussian Process Latent Variable Models
Y Li, Z Lin, F Yin, MM Zhang
International Conference on Machine Learning (ICML), 2024
2024
Online/Offline Learning to Enable Robust Beamforming: Limited Feedback Meets Deep Generative Models
Y Li, Z Lin, K Li, MM Zhang
arXiv preprint arXiv:2404.06055, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–9