Heteroclinic connections between periodic orbits in planar restricted circular three-body problem–a computer assisted proof D Wilczak, P Zgliczynski Communications in mathematical physics 234 (1), 37-75, 2003 | 140 | 2003 |
C^r-Lohner algorithm D Wilczak, P Zgliczyński Schedae Informaticae 20, 9-46, 2011 | 85* | 2011 |
CAPD:: DynSys: a flexible C++ toolbox for rigorous numerical analysis of dynamical systems T Kapela, M Mrozek, D Wilczak, P Zgliczyński Communications in nonlinear science and numerical simulation 101, 105578, 2021 | 80* | 2021 |
The existence of Shilnikov homoclinic orbits in the Michelson system: a computer assisted proof D Wilczak Foundations of Computational Mathematics 6 (4), 495-535, 2006 | 74 | 2006 |
When chaos meets hyperchaos: 4D Rössler model R Barrio, MA Martínez, S Serrano, D Wilczak Physics Letters A 379 (38), 2300-2305, 2015 | 65 | 2015 |
Heteroclinic connections between periodic orbits in planar restricted circular three body problem. Part II D Wilczak, P Zgliczyński Communications in mathematical physics 259 (3), 561-576, 2005 | 59 | 2005 |
Uniformly hyperbolic attractor of the Smale-Williams type for a Poincarè map in the Kuznetsov system D Wilczak SIAM Journal on Applied Dynamical Systems 9 (4), 1263-1283, 2010 | 55 | 2010 |
Rigorous verification of cocoon bifurcations in the Michelson system H Kokubu, D Wilczak, P Zgliczyński Nonlinearity 20 (9), 2147, 2007 | 55 | 2007 |
Symmetric heteroclinic connections in the Michelson system: A computer assisted proof D Wilczak SIAM Journal on Applied Dynamical Systems 4 (3), 489-514, 2005 | 48 | 2005 |
Chaos in the Kuramoto–Sivashinsky equations—a computer-assisted proof D Wilczak Journal of Differential Equations 194 (2), 433-459, 2003 | 46 | 2003 |
Period doubling in the Rössler system—a computer assisted proof D Wilczak, P Zgliczyński Foundations of Computational Mathematics 9 (5), 611-649, 2009 | 40 | 2009 |
A geometric method for infinite-dimensional chaos: Symbolic dynamics for the Kuramoto-Sivashinsky PDE on the line D Wilczak, P Zgliczyński Journal of Differential Equations 269 (10), 8509-8548, 2020 | 30 | 2020 |
A rigorous lower bound for the stability regions of the quadratic map W Tucker, D Wilczak Physica D: Nonlinear Phenomena 238 (18), 1923-1936, 2009 | 30 | 2009 |
Coexistence and dynamical connections between hyperchaos and chaos in the 4D Rossler system: a computer-assisted proof D Wilczak, S Serrano, R Barrio SIAM Journal on Applied Dynamical Systems 15 (1), 356-390, 2016 | 27 | 2016 |
Computer assisted proof of the existence of homoclinic tangency for the Hénon map and for the forced damped pendulum D Wilczak, P Zgliczyński SIAM Journal on Applied Dynamical Systems 8 (4), 1632-1663, 2009 | 27 | 2009 |
Abundance of heteroclinic and homoclinic orbits for the hyperchaotic Rössler system D Wilczak Discrete Contin. Dyn. Syst. Ser. B 11 (4), 1039-1055, 2009 | 23 | 2009 |
Topological method for symmetric periodic orbits for maps with a reversing symmetry D Wilczak, P Zgliczynski Discrete Contin. Dyn. Syst. Ser. A 17 (3), 629-652, 2007 | 23 | 2007 |
Symmetric homoclinic solutions to the periodic orbits in the Michelson system D Wilczak | 19 | 2006 |
Recent advances in a rigorous computation of Poincaré maps T Kapela, D Wilczak, P Zgliczyński Communications in Nonlinear Science and Numerical Simulation 110, 106366, 2022 | 18* | 2022 |
Distribution of stable islands within chaotic areas in the non-hyperbolic and hyperbolic regimes in the Hénon–Heiles system R Barrio, D Wilczak Nonlinear Dynamics 102 (1), 403-416, 2020 | 12 | 2020 |