Bayesian state estimation for unobservable distribution systems via deep learning KR Mestav, J Luengo-Rozas, L Tong IEEE Transactions on Power Systems 34 (6), 4910-4920, 2019 | 202 | 2019 |
State estimation for unobservable distribution systems via deep neural networks KR Mestav, J Luengo-Rozas, L Tong 2018 IEEE Power & Energy Society General Meeting (PESGM), 1-5, 2018 | 45 | 2018 |
A deep learning approach to anomaly sequence detection for high-resolution monitoring of power systems KR Mestav, X Wang, L Tong IEEE Transactions on Power Systems 38 (1), 4-13, 2022 | 32 | 2022 |
Universal data anomaly detection via inverse generative adversary network KR Mestav, L Tong IEEE Signal Processing Letters 27, 511-515, 2020 | 19 | 2020 |
State estimation in smart distribution systems with deep generative adversary networks KR Mestav, L Tong 2019 IEEE International Conference on Communications, Control, and Computing …, 2019 | 16 | 2019 |
Learning the unobservable: High-resolution state estimation via deep learning KR Mestav, L Tong 2019 57th Annual Allerton Conference on Communication, Control, and …, 2019 | 16 | 2019 |
Bayesian state estimation for unobservable distribution systems via deep neural networks KR Mestav, J Luengo-Rozas, L Tong ArXiv e-prints, 2018 | 2 | 2018 |
Detecting and Adapting to CSI Feedback Drift in Data-Driven Compression for MIMO Systems X Wang, KR Mestav, C Nuzman, I Saniee 2024 IEEE International Conference on Machine Learning for Communication and …, 2024 | | 2024 |
A Deep Learning Approach to State Estimation and Bad Data Detection KR Mestav Cornell University, 2021 | | 2021 |
A Deep Learning Approach to Anomaly Sequence Detection for High-Resolution Monitoring of Power Systems K Rasim Mestav, X Wang, L Tong arXiv e-prints, arXiv: 2012.05163, 2020 | | 2020 |
Universal Data Anomaly Detection via Inverse Generative Adversary Network K Rasim Mestav, L Tong arXiv e-prints, arXiv: 2001.08809, 2020 | | 2020 |
Bad-Data Sequence Detection for Power System State Estimation via ICA-GAN. KR Mestav, L Tong CoRR, 2020 | | 2020 |