关注
Janine Weber
Janine Weber
Akademische Rätin, Center for Data and Simulation Science, Universität zu Köln/University of Cologne
在 uni-koeln.de 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Combining machine learning and domain decomposition methods for the solution of partial differential equations—A review
A Heinlein, A Klawonn, M Lanser, J Weber
GAMM‐Mitteilungen 44 (1), e202100001, 2021
612021
Machine learning in adaptive domain decomposition methods---predicting the geometric location of constraints
A Heinlein, A Klawonn, M Lanser, J Weber
SIAM Journal on Scientific Computing 41 (6), A3887-A3912, 2019
382019
Estimating the time-dependent contact rate of SIR and SEIR models in mathematical epidemiology using physics-informed neural networks
V Grimm, A Heinlein, A Klawonn, M Lanser, J Weber
Electron. Trans. Numer. Anal 56, 1-27, 2022
292022
Combining Machine Learning and Adaptive Coarse Spaces---A Hybrid Approach for Robust FETI-DP Methods in Three Dimensions
A Heinlein, A Klawonn, M Lanser, J Weber
SIAM Journal on Scientific Computing 43 (5), S816-S838, 2021
172021
A frugal FETI-DP and BDDC coarse space for heterogeneous problems
A Heinlein, A Klawonn, M Lanser, J Weber
Universität zu Köln, 2019
162019
Preconditioning the coarse problem of BDDC methods-three-level, algebraic multigrid, and vertex-based preconditioners
A Klawonn, M Lanser, O Rheinbach, J Weber
Universität zu Köln, 2019
102019
Predicting the geometric location of critical edges in adaptive GDSW overlapping domain decomposition methods using deep learning
A Heinlein, A Klawonn, M Lanser, J Weber
Domain Decomposition Methods in Science and Engineering XXVI, 307-315, 2023
72023
A domain decomposition-based CNN-DNN architecture for model parallel training applied to image recognition problems
A Klawonn, M Lanser, J Weber
arXiv preprint arXiv:2302.06564, 2023
72023
Machine learning in adaptive FETI-DP: Reducing the effort in sampling
A Heinlein, A Klawonn, M Lanser, J Weber
Numerical Mathematics and Advanced Applications ENUMATH 2019: European …, 2020
72020
Estimating the time-dependent contact rate of SIR and SEIR models in mathematical epidemiology using physics-informed neural networks
V Grimm, A Heinlein, A Klawonn, M Lanser, J Weber
Universität zu Köln, 2020
62020
Machine learning in adaptive FETI-DP–a comparison of smart and random training data
A Heinlein, A Klawonn, M Lanser, J Weber
Domain Decomposition Methods in Science and Engineering XXV 25, 218-226, 2020
62020
Machine learning and domain decomposition methods--a survey
A Klawonn, M Lanser, J Weber
arXiv preprint arXiv:2312.14050, 2023
52023
Machine Learning in Adaptive FETI-DP-A Comparison of Smart and Random Training Data,(2018)
A Heinlein, A Klawonn, M Lanser, J Weber
TR series, Center for Data and Simulation Science, University of Cologne …, 0
5
Efficient and robust FETI-DP and BDDC methods--Approximate coarse spaces and deep learning-based adaptive coarse spaces
J Weber
Universität zu Köln, 2022
42022
Learning adaptive coarse basis functions of FETI-DP
A Klawonn, M Lanser, J Weber
Journal of Computational Physics 496, 112587, 2024
32024
Learning adaptive FETI-DP constraints for irregular domain decompositions
A Klawonn, M Lanser, J Weber
Domain Decomposition Methods in Science and Engineering XXVII, 279-286, 2024
22024
Combining Machine Learning and Domain Decomposition Methods–A Review
A Heinlein, A Klawonn, M Lanser, J Weber
Universität zu Köln, 2020
22020
Model Parallel Training and Transfer Learning for Convolutional Neural Networks by Domain Decomposition
A Klawonn, M Lanser, J Weber
arXiv preprint arXiv:2408.14442, 2024
2024
Adaptive Three-Level BDDC Using Frugal Constraints
A Klawonn, M Lanser, J Weber
Domain Decomposition Methods in Science and Engineering XXVII, 287-294, 2024
2024
Learning Adaptive Constraints in Nonlinear FETI-DP Methods
A Klawonn, M Lanser, J Weber
arXiv preprint arXiv:2312.14252, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20