Automated high-dimensional flow cytometric data analysis S Pyne, X Hu, K Wang, E Rossin, TI Lin, LM Maier, C Baecher-Allan, ... Proceedings of the National Academy of Sciences 106 (21), 8519-8524, 2009 | 497 | 2009 |
Robust mixture modeling using multivariate skew t distributions TI Lin Statistics and Computing 20, 343-356, 2010 | 278 | 2010 |
Finite mixture modelling using the skew normal distribution TI Lin, JC Lee, SY Yen Statistica Sinica, 909-927, 2007 | 257 | 2007 |
Robust mixture modeling using the skew t distribution TI Lin, JC Lee, WJ Hsieh Statistics and computing 17, 81-92, 2007 | 218 | 2007 |
Maximum likelihood estimation for multivariate skew normal mixture models TI Lin Journal of Multivariate Analysis 100 (2), 257-265, 2009 | 216 | 2009 |
Estimation and prediction in linear mixed models with skew‐normal random effects for longitudinal data TI Lin, JC Lee Statistics in medicine 27 (9), 1490-1507, 2008 | 127 | 2008 |
Robust linear mixed models using the skew t distribution with application to schizophrenia data HJ Ho, TI Lin Biometrical Journal 52 (4), 449-469, 2010 | 104 | 2010 |
Extending mixtures of factor models using the restricted multivariate skew-normal distribution TI Lin, GJ McLachlan, SX Lee Journal of Multivariate Analysis 143, 398-413, 2016 | 87 | 2016 |
Some results on the truncated multivariate t distribution HJ Ho, TI Lin, HY Chen, WL Wang Journal of Statistical Planning and Inference 142 (1), 25-40, 2012 | 85 | 2012 |
Flexible mixture modelling using the multivariate skew-t-normal distribution TI Lin, HJ Ho, CR Lee Statistics and Computing 24, 531-546, 2014 | 81 | 2014 |
Constant elasticity of variance (CEV) option pricing model: Integration and detailed derivation YL Hsu, TI Lin, CF Lee Mathematics and Computers in Simulation 79 (1), 60-71, 2008 | 80 | 2008 |
Maximum likelihood inference for mixtures of skew Student-t-normal distributions through practical EM-type algorithms HJ Ho, S Pyne, TI Lin Statistics and Computing 22, 287-299, 2012 | 64 | 2012 |
On fast supervised learning for normal mixture models with missing information TI Lin, JC Lee, HJ Ho Pattern Recognition 39 (6), 1177-1187, 2006 | 62 | 2006 |
Bayesian analysis of hierarchical linear mixed modeling using the multivariate t distribution TI Lin, JC Lee Journal of Statistical Planning and Inference 137 (2), 484-495, 2007 | 59 | 2007 |
A skew-normal mixture regression model M Liu, TI Lin Educational and Psychological Measurement 74 (1), 139-162, 2014 | 58 | 2014 |
A robust approach to t linear mixed models applied to multiple sclerosis data TI Lin, JC Lee Statistics in Medicine 25 (8), 1397-1412, 2006 | 55 | 2006 |
Bayesian analysis of mixture modelling using the multivariate t distribution TI Lin, JC Lee, HF Ni Statistics and Computing 14, 119-130, 2004 | 51 | 2004 |
Extending multivariate-t linear mixed models for multiple longitudinal data with censored responses and heavy tails WL Wang, TI Lin, VH Lachos Statistical methods in medical research 27 (1), 48-64, 2018 | 49 | 2018 |
Capturing patterns via parsimonious t mixture models TI Lin, PD McNicholas, HJ Ho Statistics & Probability Letters 88, 80-87, 2014 | 49 | 2014 |
Analysis of multivariate skew normal models with incomplete data TI Lin, HJ Ho, CL Chen Journal of Multivariate Analysis 100 (10), 2337-2351, 2009 | 45 | 2009 |