Ensemble deep kernel learning with application to quality prediction in industrial polymerization processes Y Liu, C Yang, Z Gao, Y Yao Chemometrics and Intelligent Laboratory Systems 174, 15-21, 2018 | 189 | 2018 |
Integrated soft sensor using just-in-time support vector regression and probabilistic analysis for quality prediction of multi-grade processes Y Liu, J Chen Journal of Process control 23 (6), 793-804, 2013 | 146 | 2013 |
Domain adaptation transfer learning soft sensor for product quality prediction Y Liu, C Yang, K Liu, B Chen, Y Yao Chemometrics and Intelligent Laboratory Systems 192, 103813, 2019 | 128 | 2019 |
Just-in-time kernel learning with adaptive parameter selection for soft sensor modeling of batch processes Y Liu, Z Gao, P Li, H Wang Industrial & Engineering Chemistry Research 51 (11), 4313-4327, 2012 | 127 | 2012 |
Flame images for oxygen content prediction of combustion systems using DBN Y Liu, Y Fan, J Chen Energy & Fuels 31 (8), 8776-8783, 2017 | 126 | 2017 |
Just-in-time semi-supervised soft sensor for quality prediction in industrial rubber mixers W Zheng, Y Liu, Z Gao, J Yang Chemometrics and Intelligent Laboratory Systems 180, 36-41, 2018 | 116 | 2018 |
Multiview generative adversarial network and its application in pearl classification Q Xuan, Z Chen, Y Liu, H Huang, G Bao, D Zhang IEEE Transactions on Industrial Electronics 66 (10), 8244-8252, 2018 | 113 | 2018 |
Generative principal component thermography for enhanced defect detection and analysis K Liu, Y Li, J Yang, Y Liu, Y Yao IEEE Transactions on Instrumentation and Measurement 69 (10), 8261-8269, 2020 | 110 | 2020 |
Automatic pearl classification machine based on a multistream convolutional neural network Q Xuan, B Fang, Y Liu, J Wang, J Zhang, Y Zheng, G Bao IEEE Transactions on Industrial Electronics 65 (8), 6538-6547, 2017 | 88 | 2017 |
Auto-switch Gaussian process regression-based probabilistic soft sensors for industrial multigrade processes with transitions Y Liu, T Chen, J Chen Industrial & Engineering Chemistry Research 54 (18), 5037-5047, 2015 | 84 | 2015 |
Selective recursive kernel learning for online identification of nonlinear systems with NARX form Y Liu, H Wang, J Yu, P Li Journal of Process Control 20 (2), 181-194, 2010 | 84 | 2010 |
Open dnn box by power side-channel attack Y Xiang, Z Chen, Z Chen, Z Fang, H Hao, J Chen, Y Liu, Z Wu, Q Xuan, ... IEEE Transactions on Circuits and Systems II: Express Briefs 67 (11), 2717-2721, 2020 | 83 | 2020 |
Software visualization and deep transfer learning for effective software defect prediction J Chen, K Hu, Y Yu, Z Chen, Q Xuan, Y Liu, V Filkov Proceedings of the ACM/IEEE 42nd international conference on software …, 2020 | 79 | 2020 |
Soft chemical analyzer development using adaptive least-squares support vector regression with selective pruning and variable moving window size Y Liu, N Hu, H Wang, P Li Industrial & Engineering Chemistry Research 48 (12), 5731-5741, 2009 | 74 | 2009 |
Development of adversarial transfer learning soft sensor for multigrade processes Y Liu, C Yang, M Zhang, Y Dai, Y Yao Industrial & Engineering Chemistry Research 59 (37), 16330-16345, 2020 | 69 | 2020 |
Deep autoencoder thermography for defect detection of carbon fiber composites K Liu, M Zheng, Y Liu, J Yang, Y Yao IEEE Transactions on Industrial Informatics, 2022 | 63 | 2022 |
Pensim 仿真平台在青霉素发酵过程的应用研究 刘毅, 王海清 系统仿真学报 18 (12), 3524-3527, 2006 | 55* | 2006 |
Spatial-neighborhood manifold learning for nondestructive testing of defects in polymer composites Y Liu, K Liu, J Yang, Y Yao IEEE Transactions on Industrial Informatics 16 (7), 4639-4649, 2019 | 54 | 2019 |
Adaptive local kernel-based learning for soft sensor modeling of nonlinear processes K Chen, J Ji, H Wang, Y Liu, Z Song Chemical Engineering Research and Design 89 (10), 2117-2124, 2011 | 53 | 2011 |
Real‐time property prediction for an industrial rubber‐mixing process with probabilistic ensemble Gaussian process regression models Y Liu, Z Gao Journal of Applied Polymer Science 132 (6), 2015 | 50 | 2015 |