关注
Hanxiao Tan
Hanxiao Tan
在 tu-dortmund.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
Explainable machine learning with prior knowledge: an overview
K Beckh, S Müller, M Jakobs, V Toborek, H Tan, R Fischer, P Welke, ...
arXiv preprint arXiv:2105.10172, 2021
332021
Surrogate model-based explainability methods for point cloud nns
H Tan, H Kotthaus
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2022
192022
Harnessing prior knowledge for explainable machine learning: An overview
K Beckh, S Müller, M Jakobs, V Toborek, H Tan, R Fischer, P Welke, ...
2023 IEEE Conference on Secure and Trustworthy Machine Learning (SaTML), 450-463, 2023
112023
Visualizing global explanations of point cloud dnns
H Tan
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2023
72023
Explainability-aware one point attack for point cloud neural networks
H Tan, H Kotthaus
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2023
72023
Fractual projection forest: Fast and explainable point cloud classifier
H Tan
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2023
32023
Maximum entropy baseline for integrated gradients
H Tan
2023 International Joint Conference on Neural Networks (IJCNN), 1-8, 2023
22023
Flow AM: Generating Point Cloud Global Explanations by Latent Alignment
H Tan
arXiv preprint arXiv:2404.18760, 2024
2024
DAM: Diffusion Activation Maximization for 3D Global Explanations
H Tan
arXiv preprint arXiv:2401.14938, 2024
2024
The Generalizability of Explanations
H Tan
2023 International Joint Conference on Neural Networks (IJCNN), 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–10