关注
David Holzmüller
David Holzmüller
Postdoc, INRIA
在 inria.fr 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments
V Zaverkin*, D Holzmüller*, I Steinwart, J Kästner
Journal of Chemical Theory and Computation 17 (10), 6658-6670, 2021
302021
A Framework and Benchmark for Deep Batch Active Learning for Regression
D Holzmüller, V Zaverkin, J Kästner, I Steinwart
Journal of Machine Learning Research 24 (164), 1-81, 2023
282023
Exploring chemical and conformational spaces by batch mode deep active learning
V Zaverkin, D Holzmüller, I Steinwart, J Kästner
Digital Discovery 1 (5), 605-620, 2022
262022
Predicting properties of periodic systems from cluster data: A case study of liquid water
V Zaverkin, D Holzmüller, R Schuldt, J Kästner
The Journal of Chemical Physics 156 (11), 114103, 2022
252022
Transfer learning for chemically accurate interatomic neural network potentials
V Zaverkin, D Holzmüller, L Bonfirraro, J Kästner
Physical Chemistry Chemical Physics 25 (7), 5383-5396, 2023
212023
Muscles reduce neuronal information load: quantification of control effort in biological vs. robotic pointing and walking
DFB Haeufle, I Wochner, D Holzmüller, D Driess, M Günther, S Schmitt
Frontiers in Robotics and AI, 77, 2020
192020
On the Universality of the Double Descent Peak in Ridgeless Regression
D Holzmüller
International Conference on Learning Representations 2021, 2020
162020
Efficient Neighbor-Finding on Space-Filling Curves
D Holzmüller
arXiv preprint arXiv:1710.06384, 2017
122017
Training Two-Layer ReLU Networks with Gradient Descent is Inconsistent
D Holzmüller, I Steinwart
Journal of Machine Learning Research 23 (181), 1-82, 2022
102022
Convergence Rates for Non-Log-Concave Sampling and Log-Partition Estimation
D Holzmüller, F Bach
arXiv preprint arXiv:2303.03237, 2023
92023
Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials
V Zaverkin, D Holzmüller, H Christiansen, F Errica, F Alesiani, ...
arXiv preprint arXiv:2312.01416, 2023
62023
Mind the spikes: Benign overfitting of kernels and neural networks in fixed dimension
M Haas*, D Holzmüller*, U von Luxburg, I Steinwart
NeurIPS 2023, 2023
52023
Improved approximation schemes for the restricted shortest path problem
D Holzmüller
arXiv preprint arXiv:1711.00284, 2017
32017
Fast Sparse Grid Operations Using the Unidirectional Principle: A Generalized and Unified Framework
D Holzmüller, D Pflüger
Sparse Grids and Applications-Munich 2018, 69-100, 2021
12021
Convergence Analysis of Neural Networks
D Holzmüller
University of Stuttgart, 2019
12019
Active Learning for Neural PDE Solvers
D Musekamp, M Kalimuthu, D Holzmüller, M Takamoto, M Niepert
arXiv preprint arXiv:2408.01536, 2024
2024
Better by Default: Strong Pre-Tuned MLPs and Boosted Trees on Tabular Data
D Holzmüller, L Grinsztajn, I Steinwart
arXiv preprint arXiv:2407.04491, 2024
2024
Regression from linear models to neural networks: double descent, active learning, and sampling
D Holzmüller
University of Stuttgart, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–18