CAESAR models for developmental toxicity A Cassano, A Manganaro, T Martin, D Young, N Piclin, M Pintore, ... Chemistry Central Journal 4, 1-11, 2010 | 1053 | 2010 |
VEGA-QSAR: AI inside a platform for predictive toxicology. E Benfenati, A Manganaro, GC Gini PAI@ AI* IA 1107, 21-28, 2013 | 205 | 2013 |
Automatic knowledge extraction from chemical structures: the case of mutagenicity prediction T Ferrari, D Cattaneo, G Gini, N Golbamaki Bakhtyari, A Manganaro, ... SAR and QSAR in Environmental Research 24 (5), 365-383, 2013 | 142 | 2013 |
Comparison of in silico tools for evaluating rat oral acute toxicity R Gonella Diaza, S Manganelli, A Esposito, A Roncaglioni, A Manganaro, ... SAR and QSAR in Environmental Research 26 (1), 1-27, 2015 | 104 | 2015 |
A generalizable definition of chemical similarity for read-across M Floris, A Manganaro, O Nicolotti, R Medda, GF Mangiatordi, E Benfenati Journal of cheminformatics 6, 1-7, 2014 | 95 | 2014 |
ToxRead: a tool to assist in read across and its use to assess mutagenicity of chemicals G Gini, AM Franchi, A Manganaro, A Golbamaki, E Benfenati SAR and QSAR in Environmental Research 25 (12), 999-1011, 2014 | 65 | 2014 |
In silico models for predicting ready biodegradability under REACH: a comparative study F Pizzo, A Lombardo, A Manganaro, E Benfenati Science of the total environment 463, 161-168, 2013 | 65 | 2013 |
coral Software: QSAR for Anticancer Agents E Benfenati, AA Toropov, AP Toropova, A Manganaro, R Gonella Diaza Chemical biology & drug design 77 (6), 471-476, 2011 | 56 | 2011 |
A new in silico classification model for ready biodegradability, based on molecular fragments A Lombardo, F Pizzo, E Benfenati, A Manganaro, T Ferrari, G Gini Chemosphere 108, 10-16, 2014 | 47 | 2014 |
Integrating in silico models to enhance predictivity for developmental toxicity M Marzo, S Kulkarni, A Manganaro, A Roncaglioni, S Wu, ... Toxicology 370, 127-137, 2016 | 40 | 2016 |
Predicting persistence in the sediment compartment with a new automatic software based on the k-Nearest Neighbor (k-NN) algorithm A Manganaro, F Pizzo, A Lombardo, A Pogliaghi, E Benfenati Chemosphere 144, 1624-1630, 2016 | 39 | 2016 |
Integrated in silico strategy for PBT assessment and prioritization under REACH F Pizzo, A Lombardo, A Manganaro, CI Cappelli, MI Petoumenou, ... Environmental Research 151, 478-492, 2016 | 37 | 2016 |
A knowledge-based expert rule system for predicting mutagenicity (Ames test) of aromatic amines and azo compounds D Gadaleta, S Manganelli, A Manganaro, N Porta, E Benfenati Toxicology 370, 20-30, 2016 | 36 | 2016 |
Using toxicological evidence from QSAR models in practice E Benfenati, S Pardoe, T Martin, RG Diaza, A Lombardo, A Manganaro, ... ALTEX-Alternatives to animal experimentation 30 (1), 19-40, 2013 | 36 | 2013 |
Introduction to MOLE DB-on-line molecular descriptors database D Ballabio, A Manganaro, V Consonni, A Mauri, R Todeschini MATCH Commun Math Comput Chem 62, 199-207, 2009 | 31 | 2009 |
New quantitative structure–activity relationship models improve predictability of Ames mutagenicity for aromatic azo compounds S Manganelli, E Benfenati, A Manganaro, S Kulkarni, TS Barton-Maclaren, ... Toxicological Sciences 153 (2), 316-326, 2016 | 30 | 2016 |
Development, validation and integration of in silico models to identify androgen active chemicals S Manganelli, A Roncaglioni, K Mansouri, RS Judson, E Benfenati, ... Chemosphere 220, 204-215, 2019 | 29 | 2019 |
A large comparison of integrated SAR/QSAR models of the Ames test for mutagenicity$ E Benfenati, A Golbamaki, G Raitano, A Roncaglioni, S Manganelli, ... SAR and QSAR in Environmental Research 29 (8), 591-611, 2018 | 29 | 2018 |
A new structure-activity relationship (SAR) model for predicting drug-induced liver injury, based on statistical and expert-based structural alerts F Pizzo, A Lombardo, A Manganaro, E Benfenati Frontiers in Pharmacology 7, 442, 2016 | 29 | 2016 |
Results of a round-robin exercise on read-across E Benfenati, M Belli, T Borges, E Casimiro, J Cester, A Fernandez, G Gini, ... SAR and QSAR in Environmental Research 27 (5), 371-384, 2016 | 29 | 2016 |