Optimal control of a non-smooth semilinear elliptic equation C Christof, C Clason, C Meyer, S Walther arXiv preprint arXiv:1705.00939, 2017 | 96 | 2017 |
Sensitivity analysis and optimal control of obstacle-type evolution variational inequalities C Christof SIAM Journal on Control and Optimization 57 (1), 192-218, 2019 | 31 | 2019 |
No-gap second-order conditions via a directional curvature functional C Christof, G Wachsmuth SIAM Journal on Optimization 28 (3), 2097-2130, 2018 | 27 | 2018 |
Differential sensitivity analysis of variational inequalities with locally Lipschitz continuous solution operators C Christof, G Wachsmuth Applied Mathematics & Optimization 81 (1), 23-62, 2020 | 26 | 2020 |
A nonsmooth trust-region method for locally Lipschitz functions with application to optimization problems constrained by variational inequalities C Christof, JC De los Reyes, C Meyer SIAM Journal on Optimization 30 (3), 2163-2196, 2020 | 26 | 2020 |
Sensitivity analysis of elliptic variational inequalities of the first and the second kind C Christof | 21 | 2018 |
Multiobjective optimal control of a non-smooth semilinear elliptic partial differential equation C Christof, G Müller ESAIM: Control, Optimisation and Calculus of Variations 27, S13, 2021 | 18 | 2021 |
New regularity results and finite element error estimates for a class of parabolic optimal control problems with pointwise state constraints C Christof, B Vexler ESAIM: Control, Optimisation and Calculus of Variations 27, 4, 2021 | 17 | 2021 |
Sensitivity Analysis for a Class of -Elliptic Variational Inequalities of the Second Kind C Christof, C Meyer Set-Valued and Variational Analysis 27, 469-502, 2019 | 14 | 2019 |
On the Non‐Polyhedricity of Sets with Upper and Lower Bounds in Dual Spaces C Christof, G Wachsmuth GAMM‐Mitteilungen 40 (4), 339-350, 2018 | 14 | 2018 |
On second-order optimality conditions for optimal control problems governed by the obstacle problem C Christof, G Wachsmuth Optimization 70 (10), 2247-2287, 2021 | 13 | 2021 |
Differentiability properties of the solution operator to an elliptic variational inequality of the second kind C Christof, C Meyer Technische Universität Dortmund, Fakultät für Mathematik, 2015 | 12 | 2015 |
A note on a priori -error estimates for the obstacle problem C Christof, C Meyer Numerische Mathematik 139, 27-45, 2018 | 10 | 2018 |
-error estimates for the obstacle problem revisited C Christof Calcolo 54 (4), 1243-1264, 2017 | 10 | 2017 |
Gradient-based solution algorithms for a class of bilevel optimization and optimal control problems with a nonsmooth lower level C Christof SIAM Journal on Optimization 30 (1), 290-318, 2020 | 9 | 2020 |
Finite element error estimates in non-energy norms for the two-dimensional scalar signorini problem C Christof, C Haubner Preprint IGDK-2018-14, IGDK, 1754 | 9* | 1754 |
Strong stationarity conditions for optimal control problems governed by a rate-independent evolution variational inequality M Brokate, C Christof SIAM Journal on Control and Optimization 61 (4), 2222-2250, 2023 | 7 | 2023 |
On the omnipresence of spurious local minima in certain neural network training problems C Christof, J Kowalczyk Constructive Approximation, 1-28, 2023 | 7 | 2023 |
Semismoothness for solution operators of obstacle-type variational inequalities with applications in optimal control C Christof, G Wachsmuth SIAM Journal on Control and Optimization 61 (3), 1162-1186, 2023 | 6 | 2023 |
A note on the equivalence and the boundary behavior of a class of Sobolev capacities C Christof, G Müller GAMM‐Mitteilungen 40 (3), 238-266, 2018 | 6 | 2018 |