An integrable shallow water equation with peaked solitons R Camassa, DD Holm Physical review letters 71 (11), 1661, 1993 | 3979 | 1993 |
Nonlinear stability of fluid and plasma equilibria DD Holm, JE Marsden, T Ratiu, A Weinstein Physics reports 123 (1-2), 1-116, 1985 | 1177 | 1985 |
The Euler–Poincaré equations and semidirect products with applications to continuum theories DD Holm, JE Marsden, TS Ratiu Advances in Mathematics 137 (1), 1-81, 1998 | 1111 | 1998 |
A new integrable shallow water equation R Camassa, DD Holm, JM Hyman Advances in Applied Mechanics 31, 1-33, 1994 | 1067 | 1994 |
A new integrable equation with peakon solutions A Degasperis, DD Holm, ANW Hone Theoretical and Mathematical Physics 133, 1463-1474, 2002 | 858 | 2002 |
The Navier–Stokes-alpha model of fluid turbulence C Foias, DD Holm, ES Titi Physica D: Nonlinear Phenomena 152, 505-519, 2001 | 502 | 2001 |
An integrable shallow water equation with linear and nonlinear dispersion HR Dullin, GA Gottwald, DD Holm Physical Review Letters 87 (19), 194501, 2001 | 481 | 2001 |
The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory C Foias, DD Holm, ES Titi Journal of Dynamics and Differential Equations 14, 1-35, 2002 | 472 | 2002 |
Geometric mechanics and symmetry: from finite to infinite dimensions DD Holm, T Schmah, C Stoica Oxford University Press, 2009 | 437 | 2009 |
Camassa-Holm equations as a closure model for turbulent channel and pipe flow S Chen, C Foias, DD Holm, E Olson, ES Titi, S Wynne Physical Review Letters 81 (24), 5338, 1998 | 414 | 1998 |
Euler-Poincaré models of ideal fluids with nonlinear dispersion DD Holm, JE Marsden, TS Ratiu Physical Review Letters 80 (19), 4173, 1998 | 402 | 1998 |
On a Leray–α model of turbulence A Cheskidov, DD Holm, E Olson, ES Titi Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2005 | 372 | 2005 |
Variational principles for stochastic fluid dynamics DD Holm Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2015 | 328 | 2015 |
Geometric mechanics-part II: rotating, translating and rolling DD Holm World Scientific, 2011 | 328 | 2011 |
Camassa–Holm, Korteweg–de Vries-5 and other asymptotically equivalent equations for shallow water waves HR Dullin, GA Gottwald, DD Holm Fluid Dynamics Research 33 (1-2), 73, 2003 | 316 | 2003 |
Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs DD Holm, MF Staley SIAM J. APPLIED DYNAMICAL SYSTEMS 2 (3), 323-380, 2003 | 314 | 2003 |
Wave Structure and Nonlinear Balances in a Family of Evolutionary PDEs DD Holm, MF Staley SIAM J. APPLIED DYNAMICAL SYSTEMS Vol. 2, No. 3, pp. 323–380 2 (3), 323 - 380, 0 | 314* | |
Low-dimensional behaviour in the complex Ginzburg-Landau equation CR Doering, JD Gibbon, DD Holm, B Nicolaenko Nonlinearity 1 (2), 279, 1988 | 312 | 1988 |
A connection between the Camassa–Holm equations and turbulent flows in channels and pipes S Chen, C Foias, DD Holm, E Olson, ES Titi, S Wynne Physics of Fluids 11 (8), 2343-2353, 1999 | 303 | 1999 |
The Camassa–Holm equations and turbulence S Chen, C Foias, DD Holm, E Olson, ES Titi, S Wynne Physica D: Nonlinear Phenomena 133 (1-4), 49-65, 1999 | 262 | 1999 |