关注
Dr. Sergey Kosov
Dr. Sergey Kosov
在 jacobs-university.de 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
LCU-Net: A novel low-cost U-Net for environmental microorganism image segmentation
J Zhang, C Li, S Kosov, M Grzegorzek, K Shirahama, T Jiang, C Sun, Z Li, ...
Pattern Recognition 115, 107885, 2021
1682021
Accurate real-time disparity estimation with variational methods
S Kosov, T Thormählen, HP Seidel
Advances in Visual Computing: 5th International Symposium, ISVC 2009, Las …, 2009
972009
Environmental microorganism classification using conditional random fields and deep convolutional neural networks
S Kosov, K Shirahama, C Li, M Grzegorzek
Pattern recognition 77, 248-261, 2018
842018
A new pairwise deep learning feature for environmental microorganism image analysis
F Kulwa, C Li, J Zhang, K Shirahama, S Kosov, X Zhao, T Jiang, ...
Environmental Science and Pollution Research 29 (34), 51909-51926, 2022
422022
Rapid stereo-vision enhanced face detection
S Kosov, K Scherbaum, K Faber, T Thormählen, HP Seidel
2009 16th IEEE International Conference on Image Processing (ICIP), 1221-1224, 2009
272009
Rapid stereo-vision enhanced face recognition
S Kosov, T Thormählen, HP Seidel
2010 IEEE International Conference on Image Processing, 2437-2440, 2010
162010
Design of a spectral–spatial pattern recognition framework for risk assessments using Landsat data—a case study in Chile
AC Braun, C Rojas, C Echeverri, F Rottensteiner, HP Bähr, J Niemeyer, ...
IEEE journal of selected topics in applied earth observations and remote …, 2014
152014
Direct Graphical Models C++ library
S Kosov
http://research.project-10.de/dgm/, 2013
152013
Sequential gaussian mixture models for two-level conditional random fields
S Kosov, F Rottensteiner, C Heipke
German Conference on Pattern Recognition, 153-163, 2013
112013
Segmentation of weakly visible environmental microorganism images using pair-wise deep learning features
F Kulwa, C Li, M Grzegorzek, MM Rahaman, K Shirahama, S Kosov
Biomedical Signal Processing and Control 79, 104168, 2023
92023
Multi–View 3D Reconstruction with Variational Method
S Kosov
Saarland University, 2008
52008
A two-layer conditional random field for the classification of partially occluded objects
S Kosov, P Kohli, F Rottensteiner, C Heipke
arXiv preprint arXiv:1307.3043, 2013
42013
Using active illumination for accurate variational space-time stereo
S Kosov, T Thormählen, HP Seidel
Image Analysis: 17th Scandinavian Conference, SCIA 2011, Ystad, Sweden, May …, 2011
42011
3D map reconstruction with variational methods
S Kosov
Master thesis, Saarland University, 2008
42008
Multi-layer conditional random fields for revealing unobserved entities
S Kosov
32018
Labeling of partially occluded regions via the multi-layer crf
S Kosov, K Shirahama, M Grzegorzek
Multimedia Tools and Applications 78 (2), 2551-2569, 2019
22019
3D classification of crossroads from multiple aerial images using conditional random fields
S Kosov, F Rottensteiner, C Heipke
7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS), 1-4, 2012
22012
Die getaktete Gruppenstrahlertechnik und ihre Anwendungen
A BULAVINOV, S KOSOV, M KRÖNING, R PINCHUK, S PUDOVIKOV, ...
Seminar „Moderne Systemtechnik bei Prüfungen mit Ultraschall “des …, 2007
22007
FlexRay communication protocol
S Kosov
(Wake Up and Start Up), 0
1
系统目前无法执行此操作,请稍后再试。
文章 1–19