关注
Myungsik cho
Myungsik cho
在 kaist.ac.kr 的电子邮件经过验证
标题
引用次数
引用次数
年份
Message-dropout: An efficient training method for multi-agent deep reinforcement learning
W Kim, M Cho, Y Sung
Proceedings of the AAAI conference on artificial intelligence 33 (01), 6079-6086, 2019
612019
A maximum mutual information framework for multi-agent reinforcement learning
W Kim, W Jung, M Cho, Y Sung
arXiv preprint arXiv:2006.02732, 2020
182020
Robust imitation learning against variations in environment dynamics
J Chae, S Han, W Jung, M Cho, S Choi, Y Sung
International Conference on Machine Learning, 2828-2852, 2022
122022
Ph. D. student
Y Sung, J Seo, J So, J Chung, S Bae, S Han, W Jung, W Kim, H Noh, ...
PHD, 2015
72015
A variational approach to mutual information-based coordination for multi-agent reinforcement learning
W Kim, W Jung, M Cho, Y Sung
arXiv preprint arXiv:2303.00451, 2023
62023
Multi-task reinforcement learning with task representation method
M Cho, W Jung, Y Sung
ICLR 2022 Workshop on Generalizable Policy Learning in Physical World, 2022
62022
Quantile constrained reinforcement learning: A reinforcement learning framework constraining outage probability
W Jung, M Cho, J Park, Y Sung
Advances in Neural Information Processing Systems 35, 6437-6449, 2022
42022
5G NSA 를 위한 링크 레벨 시뮬레이터
박기승, 박상우, 서준영, 소정호, 왕우완, 유승민, 임승찬, 정지훈, ...
제 28 회 통신정보합동학술대회, 2018
12018
5G NR 을 위한 모듈화 링크 레벨 시뮬레이터 설계
박기승, 박상우, 서준영, 소정호, 왕우완, 유승민, 임승찬, 정지훈, ...
한국통신학회 학술대회논문집, 352-353, 2018
12018
Parameterizing non-parametric meta-reinforcement learning tasks via subtask decomposition
S Lee, M Cho, Y Sung
Advances in Neural Information Processing Systems 36, 43356-43383, 2023
2023
5G K-SimLink: 5G NSA 를 위한 개방형 모듈화 링크레벨 시뮬레이터 개발
정지훈, 박상우, 왕우완, 박기승, 유승민, 임승찬, 조명식, 하대한, ...
The Journal of Korean Institute of Communications and Information Sciences 3 …, 2019
2019
5G 링크 레벨 시뮬레이터의 구현
박기승, 박상우, 서준영, 소정호, 왕우완, 유승민, 임승찬, 정지훈, ...
한국통신학회 학술대회논문집, 325-326, 2018
2018
EMPO: A Clustering-Based On-Policy Algorithm for Offline Reinforcement Learing
J Park, M Cho, Y Sung
ICML 2024 Workshop: Aligning Reinforcement Learning Experimentalists and …, 0
Hard Tasks First: Multi-Task Reinforcement Learning Through Task Scheduling
M Cho, J Park, S Lee, Y Sung
Forty-first International Conference on Machine Learning, 0
系统目前无法执行此操作,请稍后再试。
文章 1–14