关注
Alessandro La Ferlita
Alessandro La Ferlita
在 uni-due.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
A Deep Neural Network to Predict the Residual Hull Girder Strength
A La Ferlita, E Di Nardo, M Macera, T Lindemann, A Ciaramella, ...
SNAME Maritime Convention, D031S019R004, 2022
92022
An Advanced Salvage Method for Damaged Ship Structures
A La Ferlita, H Rathje, T Lindemann, P Kaeding, R Bronsart
SNAME Maritime Convention, D021S007R002, 2021
92021
A comparative study to estimate fuel consumption: a simplified physical approach against a data-driven model
A La Ferlita, Y Qi, E Di Nardo, O el Moctar, TE Schellin, A Ciaramella
Journal of Marine Science and Engineering 11 (4), 850, 2023
82023
A framework of a data-driven model for ship performance
A La Ferlita, Y Qi, E Di Nardo, O El Moctar, TE Schellin, A Ciaramella
Ocean Engineering 309, 118486, 2024
62024
Power Prediction of a 15,000 TEU Containership: Deep-Learning Algorithm Compared to a Physical Model
A La Ferlita, Y Qi, E Di Nardo, K Moenster, TE Schellin, O EL Moctar, ...
Journal of Marine Science and Engineering 11 (10), 1854, 2023
62023
Deep Neural Network (DNN) Method to predict the displacement behavior of neutral axis for ships in vertical bending
A La Ferlita, E Di Nardo, M Macera, T Lindemann, A Ciaramella, ...
Technology and Science for the Ships of the Future, 95-103, 2022
62022
Investigations on Ultimate Strength for a Container Vessel under Combined Loads
T Lindemann, P Kaeding, A Willsch, A La Ferlita, D Boote
Progress in Marine Science and Technology 6, 684-691, 2022
32022
Numerical Investigations on Ultimate Strength of a Double Hull VLCC Under Combined Loads and Initial Imperfections
T Lindemann, BE Okpeke, A La Ferlita, M Mühmer, P Kaeding
International Conference on Offshore Mechanics and Arctic Engineering 85864 …, 2022
32022
Application of Different Methods to Determine the Ultimate Strength of Ships in Bending
T Lindemann, A La Ferlita, E Di Nardo, P Kaeding
International Conference on Offshore Mechanics and Arctic Engineering 86847 …, 2023
22023
Data-driven model assessment: A comparative study for ship response determination
A La Ferlita, J Ley, Y Qi, TE Schellin, E Di Nardo, O El Moctar, ...
Ocean Engineering 314, 119711, 2024
12024
A Data-Driven Model for Rapid CII Prediction
M Mühmer, A La Ferlita, E Geber, S Ehlers, E Di Nardo, O El Moctar, ...
Journal of Marine Science and Engineering 12 (11), 2048, 2024
2024
Application of Idealized Structural Unit Method to Determine the Ultimate Strength of Ship Model in Bending
T Lindemann, A La Ferlita, P Kaeding
International Conference on Offshore Mechanics and Arctic Engineering 87790 …, 2024
2024
Prediction of Wave Energy Spectrum Based on Ship Motions Using a Data-Driven Approach.
A La Ferlita, Y Qi, E Di Nardo, S Mewes, O El Moctar, A Ciaramella
itaDATA, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–13