Directly converting Fe-doped metal–organic frameworks into highly active and stable Fe-NC catalysts for oxygen reduction in acid X Wang, H Zhang, H Lin, S Gupta, C Wang, Z Tao, H Fu, T Wang, J Zheng, ... Nano Energy 25, 110-119, 2016 | 488 | 2016 |
MOF-derived noble metal free catalysts for electrochemical water splitting Z Tao, T Wang, X Wang, J Zheng, X Li ACS applied materials & interfaces 8 (51), 35390-35397, 2016 | 157 | 2016 |
Accessing Organonitrogen Compounds via C–N Coupling in Electrocatalytic CO2 Reduction Z Tao, CL Rooney, Y Liang, H Wang Journal of the American Chemical Society 143 (47), 19630-19642, 2021 | 149 | 2021 |
Activating Copper for Electrocatalytic CO2 Reduction to Formate via Molecular Interactions Z Tao, Z Wu, Y Wu, H Wang ACS Catalysis 10 (16), 9271-9275, 2020 | 82 | 2020 |
Noble metal-free oxygen reduction reaction catalysts derived from prussian blue nanocrystals dispersed in polyaniline X Wang, L Zou, H Fu, Y Xiong, Z Tao, J Zheng, X Li ACS applied materials & interfaces 8 (13), 8436-8444, 2016 | 77 | 2016 |
Copper–Gold Interactions Enhancing Formate Production from Electrochemical CO2 Reduction Z Tao, Z Wu, X Yuan, Y Wu, H Wang ACS Catalysis 9 (12), 10894-10898, 2019 | 72 | 2019 |
Cascade electrocatalytic reduction of carbon dioxide and nitrate to ethylamine Z Tao, Y Wu, Z Wu, B Shang, C Rooney, H Wang Journal of Energy Chemistry 65, 367-370, 2022 | 62 | 2022 |
Electrochemical Reductive N-Methylation with CO2 Enabled by a Molecular Catalyst CL Rooney, Y Wu, Z Tao, H Wang Journal of the American Chemical Society 143 (47), 19983-19991, 2021 | 58 | 2021 |
Bridge Sites of Au Surfaces Are Active for Electrocatalytic CO2 Reduction Z Tao, AJ Pearce, JM Mayer, H Wang Journal of the American Chemical Society, 2022 | 46 | 2022 |
Interface Engineering of Silver-Based Heterostructures for CO2 Reduction Reaction X Yuan, Y Wu, B Jiang, Z Wu, Z Tao, X Lu, J Liu, T Qian, H Lin, Q Zhang ACS Applied Materials & Interfaces 12 (50), 56642-56649, 2020 | 37 | 2020 |
Intrinsic catalytic activity of carbon nanotubes for electrochemical nitrate reduction NJ Harmon, CL Rooney, Z Tao, B Shang, N Raychaudhuri, C Choi, H Li, ... ACS Catalysis 12 (15), 9135-9142, 2022 | 28 | 2022 |
Bifunctional electrocatalysis for CO 2 reduction via surface capping-dependent metal–oxide interactions Y Wu, X Yuan, Z Tao, H Wang Chemical communications 55 (60), 8864-8867, 2019 | 19 | 2019 |
Electrochemical deposition of CeO2 nanocrystals on Co3O4 nanoneedle arrays for efficient oxygen evolution X Yang, Z Tao, Y Wu, W Lin, J Zheng Journal of Alloys and Compounds 828, 154394, 2020 | 17 | 2020 |
Monolayer Molecular Functionalization Enabled by Acid–Base Interaction for High-Performance Photochemical CO2 Reduction B Shang, F Zhao, C Choi, X Jia, M Pauly, Y Wu, Z Tao, Y Zhong, ... ACS Energy Letters 7 (7), 2265-2272, 2022 | 14 | 2022 |
Pb3(CO3)2(OH)2 Is an Active Phase in Electrocatalytic CO2 Reduction to Formate Z Tao, H Wang Chemical Research in Chinese Universities 36, 1145-1146, 2020 | 5 | 2020 |
Exploring Electrocatalytic CO2 Reduction: From Material Design to Mechanistic Understanding Z Tao Yale University, 2022 | | 2022 |
Bridge Sites of Au Surfaces Are Active for Electrocatalytic CO₂ Reduction Z Tao, AJ Pearce, JM Mayer, H Wang | | 2022 |