The application of two-level attention models in deep convolutional neural network for fine-grained image classification T Xiao, Y Xu, K Yang, J Zhang, Y Peng, Z Zhang Proceedings of the IEEE conference on computer vision and pattern …, 2015 | 1019 | 2015 |
Gpteval: Nlg evaluation using gpt-4 with better human alignment Y Liu, D Iter, Y Xu, S Wang, R Xu, C Zhu arXiv preprint arXiv:2303.16634, 2023 | 411 | 2023 |
An empirical study of training end-to-end vision-and-language transformers ZY Dou, Y Xu, Z Gan, J Wang, S Wang, L Wang, C Zhu, P Zhang, L Yuan, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2022 | 318 | 2022 |
Generate rather than retrieve: Large language models are strong context generators W Yu, D Iter, S Wang, Y Xu, M Ju, S Sanyal, C Zhu, M Zeng, M Jiang arXiv preprint arXiv:2209.10063, 2022 | 181 | 2022 |
Want to reduce labeling cost? GPT-3 can help S Wang, Y Liu, Y Xu, C Zhu, M Zeng arXiv preprint arXiv:2108.13487, 2021 | 177 | 2021 |
Scale-invariant convolutional neural networks Y Xu, T Xiao, J Zhang, K Yang, Z Zhang arXiv preprint arXiv:1411.6369, 2014 | 172 | 2014 |
Dialoglm: Pre-trained model for long dialogue understanding and summarization M Zhong, Y Liu, Y Xu, C Zhu, M Zeng Proceedings of the AAAI Conference on Artificial Intelligence 36 (10), 11765 …, 2022 | 106 | 2022 |
Training data is more valuable than you think: A simple and effective method by retrieving from training data S Wang, Y Xu, Y Fang, Y Liu, S Sun, R Xu, C Zhu, M Zeng arXiv preprint arXiv:2203.08773, 2022 | 93 | 2022 |
Kg-fid: Infusing knowledge graph in fusion-in-decoder for open-domain question answering D Yu, C Zhu, Y Fang, W Yu, S Wang, Y Xu, X Ren, Y Yang, M Zeng arXiv preprint arXiv:2110.04330, 2021 | 93 | 2021 |
Revive: Regional visual representation matters in knowledge-based visual question answering Y Lin, Y Xie, D Chen, Y Xu, C Zhu, L Yuan Advances in Neural Information Processing Systems 35, 10560-10571, 2022 | 69 | 2022 |
Multi-task learning with sample re-weighting for machine reading comprehension Y Xu, X Liu, Y Shen, J Liu, J Gao Proceedings of the 2019 Conference of the North American Chapter of the …, 2019 | 65* | 2019 |
Dict-bert: Enhancing language model pre-training with dictionary W Yu, C Zhu, Y Fang, D Yu, S Wang, Y Xu, M Zeng, M Jiang arXiv preprint arXiv:2110.06490, 2021 | 62 | 2021 |
Active learning for graph neural networks via node feature propagation Y Wu, Y Xu, A Singh, Y Yang, A Dubrawski arXiv preprint arXiv:1910.07567, 2019 | 61 | 2019 |
G-Eval: NLG Evaluation using GPT-4 with Better Human Alignment (2023) Y Liu, D Iter, Y Xu, S Wang, R Xu, C Zhu URL http://arxiv. org/abs/2303.16634, 0 | 58 | |
Human parity on commonsenseqa: Augmenting self-attention with external attention Y Xu, C Zhu, S Wang, S Sun, H Cheng, X Liu, J Gao, P He, M Zeng, ... arXiv preprint arXiv:2112.03254, 2021 | 51 | 2021 |
Fusing context into knowledge graph for commonsense question answering Y Xu, C Zhu, R Xu, Y Liu, M Zeng, X Huang Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 …, 2021 | 51 | 2021 |
Preference-based reinforcement learning with finite-time guarantees Y Xu, R Wang, L Yang, A Singh, A Dubrawski Advances in Neural Information Processing Systems 33, 18784-18794, 2020 | 51 | 2020 |
Noise-Tolerant Interactive Learning Using Pairwise Comparisons Y Xu, H Zhang, K Miller, A Singh, A Dubrawski Advances in Neural Information Processing Systems, 2431--2440, 2017 | 46* | 2017 |
Dynamic fusion networks for machine reading comprehension Y Xu, J Liu, J Gao, Y Shen, X Liu arXiv preprint arXiv:1711.04964, 2017 | 46* | 2017 |
On Strategyproof Conference Peer Review Y Xu, H Zhao, X Shi, NB Shah Proceedings of the Twenty-Eighth International Joint Conference on …, 2019 | 45 | 2019 |