Consistency and fluctuations for stochastic gradient Langevin dynamics Y Whye Teh, A Thiéry, S Vollmer Journal of Machine Learning Research 17 (7), 1−33, 2016 | 261 | 2016 |
On the efficiency of pseudo-marginal random walk Metropolis algorithms C Sherlock, AH Thiery, GO Roberts, JS Rosenthal | 222 | 2015 |
DRUNET: a dilated-residual U-Net deep learning network to segment optic nerve head tissues in optical coherence tomography images SK Devalla, PK Renukanand, BK Sreedhar, G Subramanian, L Zhang, ... Biomedical optics express 9 (7), 3244-3265, 2018 | 195 | 2018 |
Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore PN Pratanwanich, F Yao, Y Chen, CWQ Koh, YK Wan, C Hendra, P Poon, ... Nature biotechnology 39 (11), 1394-1402, 2021 | 178 | 2021 |
Uncertainty quantification and deep ensembles R Rahaman, AH Thiery Advances in Neural Information Processing Systems 34, 2021 | 123 | 2021 |
Optimal scaling and diffusion limits for the Langevin algorithm in high dimensions NS Pillai, AM Stuart, AH Thiéry | 122 | 2012 |
On the convergence of adaptive sequential Monte Carlo methods A Beskos, A Jasra, N Kantas, A Thiery Annals of Applied Probability 26 (2), 1111-1146, 2016 | 113 | 2016 |
A deep learning approach to digitally stain optical coherence tomography images of the optic nerve head SK Devalla, KS Chin, JM Mari, TA Tun, NG Strouthidis, T Aung, AH Thiéry, ... Investigative ophthalmology & visual science 59 (1), 63-74, 2018 | 108 | 2018 |
Detection of m6A from direct RNA sequencing using a multiple instance learning framework C Hendra, PN Pratanwanich, YK Wan, WSS Goh, A Thiery, J Göke Nature methods 19 (12), 1590-1598, 2022 | 104 | 2022 |
A deep learning approach to denoise optical coherence tomography images of the optic nerve head SK Devalla, G Subramanian, TH Pham, X Wang, S Perera, TA Tun, ... Scientific reports 9 (1), 14454, 2019 | 104 | 2019 |
NanoVar: accurate characterization of patients’ genomic structural variants using low-depth nanopore sequencing CY Tham, R Tirado-Magallanes, Y Goh, MJ Fullwood, BTH Koh, W Wang, ... Genome biology 21, 1-15, 2020 | 97 | 2020 |
Glaucoma management in the era of artificial intelligence SK Devalla, Z Liang, TH Pham, C Boote, NG Strouthidis, AH Thiery, ... British Journal of Ophthalmology 104 (3), 301-311, 2020 | 87 | 2020 |
On non-negative unbiased estimators PE Jacob, AH Thiery The Annals of Statistics 43 (2), 769--784, 2015 | 86 | 2015 |
Probabilistic forecasting of day-ahead solar irradiance using quantile gradient boosting H Verbois, A Rusydi, A Thiery Solar Energy 173, 313-327, 2018 | 68 | 2018 |
A systematic benchmark of Nanopore long read RNA sequencing for transcript level analysis in human cell lines Y Chen, NM Davidson, YK Wan, H Patel, F Yao, HM Low, C Hendra, ... BioRxiv, 2021.04. 21.440736, 2021 | 63 | 2021 |
Pseudo-marginal Metropolis–Hastings sampling using averages of unbiased estimators C Sherlock, AH Thiery, A Lee Biometrika 104 (3), 727-734, 2017 | 37 | 2017 |
Deep learning algorithms to isolate and quantify the structures of the anterior segment in optical coherence tomography images TH Pham, SK Devalla, A Ang, ZD Soh, AH Thiery, C Boote, CY Cheng, ... British Journal of Ophthalmology 105 (9), 1231-1237, 2021 | 35 | 2021 |
DeshadowGAN: a deep learning approach to remove shadows from optical coherence tomography images H Cheong, SK Devalla, TH Pham, L Zhang, TA Tun, X Wang, S Perera, ... Translational Vision Science & Technology 9 (2), 23-23, 2020 | 33 | 2020 |
Towards label-free 3D segmentation of optical coherence tomography images of the optic nerve head using deep learning SK Devalla, TH Pham, SK Panda, L Zhang, G Subramanian, ... Biomedical optics express 11 (11), 6356-6378, 2020 | 31 | 2020 |
Noisy gradient flow from a random walk in Hilbert space NS Pillai, AM Stuart, AH Thiéry Stochastic Partial Differential Equations: Analysis and Computations 2, 196-232, 2014 | 29* | 2014 |