A pocket guide to nonlinear differential equations in the Musielak--Orlicz spaces I Chlebicka Nonlinear Analysis 175, 1-27, 2018 | 117 | 2018 |
Gossez's approximation theorems in the Musielak-Orlicz-Sobolev spaces Y Ahmida, I Chlebicka, P Gwiazda, A Youssfi Journal of Functional Analysis 275 (9), 2538-2571, 2018 | 96 | 2018 |
Existence of renormalized solutions to elliptic equation in Musielak-Orlicz space P Gwiazda, I Skrzypczak, A Zatorska-Goldstein Journal of Differential Equations 264 (1), 341-377, 2018 | 79 | 2018 |
Partial differential equations in anisotropic Musielak–Orlicz spaces I Chlebicka, P Gwiazda, A Wróblewska-Kaminska, ... preprint, Springer Monographs in Mathematics, 2021 | 60 | 2021 |
Fully anisotropic elliptic problem with minimally integrable data A Alberico, I Chlebicka, A Cianchi, A Zatorska-Goldstein Calculus of Variations and PDEs 58 (168), 2019 | 41 | 2019 |
Well-posedness of parabolic equations in the non-reflexive and anisotropic Musielak–Orlicz spaces in the class of renormalized solutions I Chlebicka, P Gwiazda, A Zatorska-Goldstein Journal of Differential Equations 265 (11), 5716-5766, 2018 | 37 | 2018 |
Hardy-type inequalities derived from p-harmonic problems I Skrzypczak Nonlinear Analysis: Theory, Methods & Applications 93, 30-50, 2013 | 37 | 2013 |
Removable sets in non-uniformly elliptic problems I Chlebicka, C De Filippis Annali di Matematica Pura ed Applicata (1923-) 199, 619-649, 2020 | 36 | 2020 |
Parabolic equation in time and space dependent anisotropic Musielak–Orlicz spaces in absence of Lavrentiev's phenomenon I Chlebicka, P Gwiazda, A Zatorska–Goldstein Annales de l'Institut Henri Poincaré C, Analyse non linéaire 36 (5), 1431-1465, 2019 | 34 | 2019 |
Gradient estimates for problems with Orlicz growth I Chlebicka Nonlinear Analysis 194, 111364, 2020 | 33 | 2020 |
Elliptic problems with growth in nonreflexive Orlicz spaces and with measure or L1 data I Chlebicka, F Giannetti, A Zatorska-Goldstein Journal of Mathematical Analysis and Applications 479 (1), 185-213, 2019 | 26 | 2019 |
Measure data elliptic problems with generalized Orlicz growth I Chlebicka Proceedings of the Royal Society of Edinburgh Section A: Mathematics 153 (2 …, 2023 | 20 | 2023 |
Wolff potentials and local behaviour of solutions to measure data elliptic problems with Orlicz growth I Chlebicka, F Giannetti, A Zatorska-Goldstein arXiv preprint arXiv:2006.02172, 2020 | 19 | 2020 |
Boundary regularity for manifold constrained -harmonic maps I Chlebicka, C De Filippis, L Koch Journal of London Mathematical Society, 2020 | 19 | 2020 |
Renormalized solutions to parabolic equations in time and space dependent anisotropic Musielak-Orlicz spaces in absence of Lavrentiev's phenomenon I Chlebicka, P Gwiazda, A Zatorska-Goldstein Journal of Differential Equations 267 (2), 1129-1166, 2019 | 16 | 2019 |
Hardy-Poincaré type inequalities derived from p-harmonic problems I Skrzypczak Calculus of variations and PDEs 101, 225-238, 2014 | 16 | 2014 |
Generalized superharmonic functions with strongly nonlinear operator I Chlebicka, A Zatorska-Goldstein Potential Analysis 57 (3), 379-400, 2022 | 15 | 2022 |
Removable sets in elliptic equations with Musielak–Orlicz growth I Chlebicka, A Karppinen Journal of Mathematical Analysis and Applications 501 (1), 124073, 2021 | 15 | 2021 |
Modular density of smooth functions in inhomogeneous and fully anisotropic Musielak–Orlicz–Sobolev spaces M Borowski, I Chlebicka Journal of Functional Analysis 283 (12), 109716, 2022 | 14 | 2022 |
Regularizing effect of the lower-order terms in elliptic problems with Orlicz growth I Chlebicka Israel Journal of Mathematics, arXiv:1902.05314, 2019 | 13 | 2019 |