关注
Omar Montasser
Omar Montasser
Assistant Professor, Yale
在 yale.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
VC classes are adversarially robustly learnable, but only improperly
O Montasser, S Hanneke, N Srebro
Conference on Learning Theory (COLT) 2019, 2019
1632019
Beyond Perturbations: Learning Guarantees with Arbitrary Adversarial Test Examples
S Goldwasser, AT Kalai, Y Kalai, O Montasser
Advances in Neural Information Processing Systems (NeurIPS) 2020 33, 2020
452020
Reducing Adversarially Robust Learning to Non-Robust PAC Learning
O Montasser, S Hanneke, N Srebro
Advances in Neural Information Processing Systems (NeurIPS) 2020 33, 2020
392020
Approximate is Good Enough: Probabilistic Variants of Dimensional and Margin Complexity
P Kamath, O Montasser, N Srebro
Conference on Learning Theory (COLT) 2020, 2020
382020
Efficiently Learning Adversarially Robust Halfspaces with Noise
O Montasser, S Goel, I Diakonikolas, N Srebro
International Conference on Machine Learning (ICML) 2020, 2020
362020
Adversarially Robust Learning with Unknown Perturbation Sets
O Montasser, S Hanneke, N Srebro
Conference on Learning Theory (COLT) 2021, 2021
282021
A theory of PAC learnability under transformation invariances
H Shao, O Montasser, A Blum
Advances in Neural Information Processing Systems 35, 13989-14001, 2022
232022
Adversarially robust learning: A generic minimax optimal learner and characterization
O Montasser, S Hanneke, N Srebro
Advances in Neural Information Processing Systems 35, 37458-37470, 2022
202022
Transductive Robust Learning Guarantees
O Montasser, S Hanneke, N Srebro
International Conference on Artificial Intelligence and Statistics (AISTATS …, 2021
142021
Predicting demographics of high-resolution geographies with geotagged tweets
O Montasser, D Kifer
AAAI Conference on Artificial Intelligence (AAAI) 2017, 2017
122017
Strategic classification under unknown personalized manipulation
H Shao, A Blum, O Montasser
Advances in Neural Information Processing Systems 36, 2024
112024
Boosting barely robust learners: A new perspective on adversarial robustness
A Blum, O Montasser, G Shakhnarovich, H Zhang
Advances in Neural Information Processing Systems 35, 1307-1319, 2022
22022
Derandomizing Multi-Distribution Learning
KG Larsen, O Montasser, N Zhivotovskiy
arXiv preprint arXiv:2409.17567, 2024
12024
Transformation-Invariant Learning and Theoretical Guarantees for OOD Generalization
O Montasser, H Shao, E Abbe
arXiv preprint arXiv:2410.23461, 2024
2024
Derandomizing Multi-Distribution Learning
K Green Larsen, O Montasser, N Zhivotovskiy
arXiv e-prints, arXiv: 2409.17567, 2024
2024
Agnostic Multi-Robust Learning Using ERM
S Ahmadi, A Blum, O Montasser, KM Stangl
International Conference on Artificial Intelligence and Statistics, 2242-2250, 2024
2024
Theoretical Foundations of Adversarially Robust Learning
O Montasser
arXiv preprint arXiv:2306.07723, 2023
2023
Certifiable (Multi) Robustness Against Patch Attacks Using ERM.
S Ahmadi, A Blum, O Montasser, K Stangl
CoRR, 2023
2023
Identifying unpredictable test examples with worst-case guarantees
S Goldwasser, AT Kalai, YT Kalai, O Montasser
2020 Information Theory and Applications Workshop (ITA), 1-14, 2020
2020
Predicting Demographics of High-Resolution Geographies
OT Montasser
2017
系统目前无法执行此操作,请稍后再试。
文章 1–20