关注
RAHUL HALDER
RAHUL HALDER
Research Scientist at SISSA, Italy
在 sissa.it 的电子邮件经过验证
标题
引用次数
引用次数
年份
Deep learning based reduced order model for airfoil-gust and aeroelastic interaction
R Halder, M Damodaran, BC Khoo
AIAA Journal 58 (10), 4304-4321, 2020
332020
Droplet generation in a microchannel with a controllable deformable wall
A Raj, R Halder, P Sajeesh, AK Sen
Microfluidics and Nanofluidics 20, 1-16, 2016
222016
Deep learning-driven nonlinear reduced-order models for predicting wave-structure interaction
R Halder, M Damodaran, BC Khoo
Ocean Engineering 280, 114511, 2023
112023
Signal interpolation augmented linear nonintrusive reduced-order model for aeroelastic applications
R Halder, M Damodaran, BC Khoo
AIAA Journal 58 (1), 426-444, 2020
92020
Investigation of applying physics informed neural networks (PINN) and variants on 2d aerodynamics problems
WB Tay, M Damodaran, ZD Teh, R Halder
Fluids Engineering Division Summer Meeting 83730, V003T05A055, 2020
22020
Implementation of a Modal Analysis Platform for Aeroelastic Computation in an Open Source CFD Solver SU2 and Application in Reduced Order Modelling
R Halder, M Damodaran, B Khoo
SU2 Conference, 2020
22020
An LSTM-enhanced surrogate model to simulate the dynamics of particle-laden fluid systems
A Hajisharifi, R Halder, M Girfoglio, A Beccari, D Bonanni, G Rozza
Computers & Fluids 280, 106361, 2024
12024
Physics Informed Neural Network Framework for Unsteady Discretized Reduced Order System
R Halder, G Stabile, G Rozza
arXiv preprint arXiv:2311.14045, 2023
2023
Computational Assessment of Transonic Airfoil-Gust Aeroelastic Response
R Halder, M Damodaran, B Cheong Khoo
AIAA Journal 60 (4), 2597-2614, 2022
2022
Discrete Empirical Interpolation Method Augmented Non-Instrusive Reduced Order Model for Aeroelastic Instabilities and Gust Load Analysis
R Halder
PQDT-Global, 2019
2019
Transonic Flutter Prediction Using Subspace Identification Based Reduced Order Method with Parametric Variation and Flowfield Reconstruction
R Halder, M Damodaran, BC Khoo
AIAA Aviation 2019 Forum, 3390, 2019
2019
INVESTIGATION OF APPLYING PHYSICS INFORMED NEURAL NETWORKS (PINN) AND VARIANTS ON 2D AERODYNAMICS PROBLEMS
TAY Wee-Beng, M Damodaran, ZD Teh, R Halder
系统目前无法执行此操作,请稍后再试。
文章 1–12