关注
Ney Rafael Sêcco
标题
引用次数
引用次数
年份
Efficient mesh generation and deformation for aerodynamic shape optimization
NR Secco, GKW Kenway, P He, C Mader, JRRA Martins
AIAA Journal 59 (4), 1151-1168, 2021
1152021
RANS-based aerodynamic shape optimization of a strut-braced wing with overset meshes
NR Secco, JRRA Martins
Journal of Aircraft 56 (1), 217-227, 2019
742019
Artificial neural networks to predict aerodynamic coefficients of transport airplanes
NR Secco, BS Mattos
Aircraft Engineering and Aerospace Technology 89 (2), 211-230, 2017
622017
An efficient parallel overset method for aerodynamic shape optimization
GK Kenway, A Mishra, NR Secco, K Duraisamy, JRRA Martins
58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials …, 2017
572017
Component-based geometry manipulation for aerodynamic shape optimization with overset meshes
NR Secco, JP Jasa, GKW Kenway, JRRA Martins
AIAA Journal 56 (9), 3667-3679, 2018
492018
Optimal design of a high-altitude solar-powered unmanned airplane
BS Mattos, NR Secco, EF Salles
Journal of Aerospace Technology and Management 5, 349-361, 2013
462013
Artificial neural networks applied to airplane design
NR Secco, BS Mattos
53rd AIAA aerospace sciences meeting, 1013, 2015
202015
Aerodynamic shape optimization of a truss-braced-wing aircraft
D Ivaldi, NR Secco, S Chen, JT Hwang, JRRA Martins
16th AIAA/ISSMO multidisciplinary analysis and optimization conference, 3436, 2015
112015
An airplane calculator featuring a high-fidelity methodology for tailplane sizing
BS Mattos, NR Secco
Journal of Aerospace Technology and Management 5, 371-386, 2013
92013
An Uncertainty-based Framework for Technology Portfolio Selection for Future Aircraft Program
D Bianchi, K Amadori, E Bäckström, C Jouannet, N Secco
AIAA Scitech 2021 Forum, 1479, 2021
62021
Decision tree classifiers for unmanned aircraft configuration selection
JA Dantas de Jesus Ferreira, NR Secco
Aircraft Engineering and Aerospace Technology 93 (6), 1122-1132, 2021
52021
A framework for enhanced decision-making in aircraft conceptual design optimisation under uncertainty
DHB Di Bianchi, NR Sêcco, FJ Silvestre
The Aeronautical Journal 125 (1287), 777-806, 2021
52021
Aircraft control design with linear and non linear techniques: comparative aspects
DL Cerignoni, DG Galisteu, GP Camillo, NR Sêcco, FT Vargas, ...
Proceeding Series of the Brazilian Society of Computational and Applied …, 2013
32013
Component-based aerodynamic shape optimization using overset meshes
N Secco
22018
An adjoint-based methodology for calculating manufacturing tolerances for natural laminar flow airfoils susceptible to smooth surface waviness
M Moniripiri, PPC Brito, AVG Cavalieri, NR Sêcco, A Hanifi
Theoretical and Computational Fluid Dynamics 38 (1), 15-37, 2024
12024
Wing-fuselage drag prediction using artificial neural networks
N Secco, B Mattos
50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and …, 2012
12012
Aerodynamic optimization coupled with adjoint-based adaptive unstructured meshes
HH Lemos, N Sêcco
AIAA AVIATION 2021 FORUM, 2732, 2021
2021
Use of artificial neural networks to correct computer simulations of small-scale propellers
LG Souza, C Martins, N Sêcco
AIAA AVIATION 2021 FORUM, 2498, 2021
2021
Misconceptions about the Central Limit Theorem in Uncertainty-based Design Optimization
D Bianchi, N Secco
AIAA Scitech 2021 Forum, 1594, 2021
2021
APPLYING MDO TO CLASSICAL CONCEPTUAL AIRCRAFT DESIGN METHODOLOGIES
NR Sêcco
Instituto Tecnológico de Aeronáutica, 2019
2019
系统目前无法执行此操作,请稍后再试。
文章 1–20