Interpretability of deep learning models: A survey of results S Chakraborty, R Tomsett, R Raghavendra, D Harborne, M Alzantot, ... 2017 IEEE smartworld, ubiquitous intelligence & computing, advanced …, 2017 | 510 | 2017 |
Sanity checks for saliency metrics R Tomsett, D Harborne, S Chakraborty, P Gurram, A Preece Proceedings of the AAAI conference on artificial intelligence 34 (04), 6021-6029, 2020 | 159 | 2020 |
A polarimetric thermal database for face recognition research S Hu, NJ Short, BS Riggan, C Gordon, KP Gurton, M Thielke, P Gurram, ... Proceedings of the IEEE conference on computer vision and pattern …, 2016 | 92 | 2016 |
Improving cross-modal face recognition using polarimetric imaging N Short, S Hu, P Gurram, K Gurton, A Chan Optics letters 40 (6), 882-885, 2015 | 59 | 2015 |
Support-vector-based hyperspectral anomaly detection using optimized kernel parameters P Gurram, H Kwon IEEE Geoscience and Remote Sensing Letters 8 (6), 1060-1064, 2011 | 49 | 2011 |
Why the failure? how adversarial examples can provide insights for interpretable machine learning R Tomsett, A Widdicombe, T Xing, S Chakraborty, S Julier, P Gurram, ... 2018 21st international conference on information fusion (FUSION), 838-845, 2018 | 45 | 2018 |
Sparse kernel-based hyperspectral anomaly detection P Gurram, H Kwon, T Han IEEE Geoscience and Remote Sensing Letters 9 (5), 943-947, 2012 | 45 | 2012 |
Contextual SVM using Hilbert space embedding for hyperspectral classification P Gurram, H Kwon IEEE Geoscience and Remote Sensing Letters 10 (5), 1031-1035, 2013 | 41 | 2013 |
Sparse kernel-based ensemble learning with fully optimized kernel parameters for hyperspectral classification problems P Gurram, H Kwon IEEE Transactions on Geoscience and Remote Sensing 51 (2), 787-802, 2012 | 41 | 2012 |
Distributed stochastic gradient descent with event-triggered communication J George, P Gurram Proceedings of the AAAI Conference on Artificial Intelligence 34 (05), 7169-7178, 2020 | 33 | 2020 |
3d scene reconstruction through a fusion of passive video and lidar imagery P Gurram, S Lach, E Saber, H Rhody, J Kerekes 36th Applied Imagery Pattern Recognition Workshop (aipr 2007), 133-138, 2007 | 31 | 2007 |
Vision-based gesture recognition in human-robot teams using synthetic data CM de Melo, B Rothrock, P Gurram, O Ulutan, BS Manjunath 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2020 | 27 | 2020 |
Wasserstein distance based domain adaptation for object detection P Xu, P Gurram, G Whipps, R Chellappa arXiv preprint arXiv:1909.08675, 2019 | 22 | 2019 |
A Bayesian theory of change detection in statistically periodic random processes T Banerjee, P Gurram, GT Whipps IEEE Transactions on Information Theory 67 (4), 2562-2580, 2021 | 18 | 2021 |
Exploiting polarization-state information for cross-spectrum face recognition N Short, S Hu, P Gurram, K Gurton 2015 IEEE 7th International Conference on Biometrics Theory, Applications …, 2015 | 18 | 2015 |
Sparse kernel learning-based feature selection for anomaly detection Z Peng, P Gurram, H Kwon, W Yin IEEE Transactions on Aerospace and Electronic Systems 51 (3), 1698-1716, 2015 | 18 | 2015 |
Detection of Non-O157 Shiga Toxin-Producing Escherichia coli (STEC) Serogroups with Hyperspectral Microscope Imaging Technology B Park, WR Windham, SR Ladely, P Gurram, H Kwon, SC Yoon, ... Transactions of the ASABE 57 (3), 973-986, 2014 | 18 | 2014 |
Distributed stochastic gradient method for non-convex problems with applications in supervised learning J George, T Yang, H Bai, P Gurram 2019 IEEE 58th Conference on Decision and Control (CDC), 5538-5543, 2019 | 16 | 2019 |
Sequential event detection using multimodal data in nonstationary environments T Banerjee, G Whipps, P Gurram, V Tarokh 2018 21st International Conference on Information Fusion (FUSION), 1940-1947, 2018 | 16 | 2018 |
Ensemble learning based on multiple kernel learning for hyperspectral chemical plume detection P Gurram, H Kwon Algorithms and Technologies for Multispectral, Hyperspectral, and …, 2010 | 16 | 2010 |