A meta-transfer objective for learning to disentangle causal mechanisms Y Bengio, T Deleu, N Rahaman, R Ke, S Lachapelle, O Bilaniuk, A Goyal, ... arXiv preprint arXiv:1901.10912, 2019 | 366 | 2019 |
Gradient-based neural dag learning S Lachapelle, P Brouillard, T Deleu, S Lacoste-Julien arXiv preprint arXiv:1906.02226, 2019 | 235 | 2019 |
Differentiable causal discovery from interventional data P Brouillard, S Lachapelle, A Lacoste, S Lacoste-Julien, A Drouin Advances in Neural Information Processing Systems 33, 21865-21877, 2020 | 157 | 2020 |
Disentanglement via mechanism sparsity regularization: A new principle for nonlinear ICA S Lachapelle, P Rodriguez, Y Sharma, KE Everett, R Le Priol, A Lacoste, ... Conference on Causal Learning and Reasoning, 428-484, 2022 | 107 | 2022 |
Predicting tactical solutions to operational planning problems under imperfect information E Larsen, S Lachapelle, Y Bengio, E Frejinger, S Lacoste-Julien, A Lodi INFORMS Journal on Computing 34 (1), 227-242, 2022 | 77* | 2022 |
On the convergence of continuous constrained optimization for structure learning I Ng, S Lachapelle, NR Ke, S Lacoste-Julien, K Zhang International Conference on Artificial Intelligence and Statistics, 8176-8198, 2022 | 36 | 2022 |
Synergies between disentanglement and sparsity: Generalization and identifiability in multi-task learning S Lachapelle, T Deleu, D Mahajan, I Mitliagkas, Y Bengio, ... International Conference on Machine Learning, 18171-18206, 2023 | 24 | 2023 |
Partial disentanglement via mechanism sparsity S Lachapelle, S Lacoste-Julien arXiv preprint arXiv:2207.07732, 2022 | 23 | 2022 |
Additive decoders for latent variables identification and cartesian-product extrapolation S Lachapelle, D Mahajan, I Mitliagkas, S Lacoste-Julien Advances in Neural Information Processing Systems 36, 2024 | 13 | 2024 |
Multi-view causal representation learning with partial observability D Yao, D Xu, S Lachapelle, S Magliacane, P Taslakian, G Martius, ... arXiv preprint arXiv:2311.04056, 2023 | 10 | 2023 |
Typing assumptions improve identification in causal discovery P Brouillard, P Taslakian, A Lacoste, S Lachapelle, A Drouin Conference on Causal Learning and Reasoning, 162-177, 2022 | 9 | 2022 |
Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse Actions, Interventions and Sparse Temporal Dependencies S Lachapelle, PR López, Y Sharma, K Everett, RL Priol, A Lacoste, ... arXiv preprint arXiv:2401.04890, 2024 | 6 | 2024 |
A sparsity principle for partially observable causal representation learning D Xu, D Yao, S Lachapelle, P Taslakian, J von Kügelgen, F Locatello, ... arXiv preprint arXiv:2403.08335, 2024 | 1 | 2024 |
Leveraging Structure Between Environments: Phylogenetic Regularization Incentivizes Disentangled Representations E Layne, J Hartford, S Lachapelle, M Blanchette, D Sridhar arXiv preprint arXiv:2405.20482, 2024 | | 2024 |
Prospective Students/Postdocs S Lachapelle, D Mahajan, I Mitliagkas, S Lacoste-Julien Proceedings of the Neural Information Processing Systems, 2024 | | 2024 |
Causal Representation Learning S Magliacane, A Mastakouri, YM Asano, C Shi, C Eastwood, S Lachapelle, ... Annual Conference on Neural Information Processing Systems, 2023 | | 2023 |
Using Typed Data for Causal Fault Discovery in Networks A Drouin, A Lacoste, P Taslakian, P Brouillard, S Lachapelle US Patent App. 17/466,376, 2023 | | 2023 |