Forecasting: principles and practice RJ Hyndman, G Athanasopoulos OTexts, 2018 | 8397 | 2018 |
Forecasting methods and applications S Makridakis, SC Wheelwright, RJ Hyndman John Wiley & Sons, 1998 | 7684* | 1998 |
Another look at measures of forecast accuracy RJ Hyndman, AB Koehler International journal of forecasting 22 (4), 679-688, 2006 | 6173 | 2006 |
Automatic time series forecasting: the forecast package for R RJ Hyndman, Y Khandakar Journal of Statistical Software, 2007 | 4842 | 2007 |
Forecasting with exponential smoothing: the state space approach RJ Hyndman, AB Koehler, JK Ord, RD Snyder Springer Verlag, 2008 | 2059 | 2008 |
Detecting trend and seasonal changes in satellite image time series J Verbesselt, R Hyndman, G Newnham, D Culvenor Remote sensing of Environment 114 (1), 106-115, 2010 | 1889 | 2010 |
forecast: Forecasting functions for time series and linear models RJ Hyndman | 1777* | 2021 |
25 years of time series forecasting JG De Gooijer, RJ Hyndman International journal of forecasting 22 (3), 443-473, 2006 | 1594 | 2006 |
Sample quantiles in statistical packages RJ Hyndman, Y Fan The American Statistician 50 (4), 361-365, 1996 | 1421 | 1996 |
A state space framework for automatic forecasting using exponential smoothing methods RJ Hyndman, AB Koehler, RD Snyder, S Grose International Journal of forecasting 18 (3), 439-454, 2002 | 1384 | 2002 |
Forecasting time series with complex seasonal patterns using exponential smoothing AM De Livera, RJ Hyndman, RD Snyder Journal of the American statistical association 106 (496), 1513-1527, 2011 | 1228 | 2011 |
Robust forecasting of mortality and fertility rates: A functional data approach RJ Hyndman, MS Ullah Computational Statistics and Data Analysis 51 (10), 4942-4956, 2007 | 945 | 2007 |
Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond T Hong, P Pinson, S Fan, H Zareipour, A Troccoli, RJ Hyndman International Journal of forecasting 32 (3), 896-913, 2016 | 936 | 2016 |
Characteristic-based clustering for time series data X Wang, K Smith, R Hyndman Data mining and knowledge Discovery 13, 335-364, 2006 | 860 | 2006 |
Phenological change detection while accounting for abrupt and gradual trends in satellite image time series J Verbesselt, R Hyndman, A Zeileis, D Culvenor Remote Sensing of Environment 114 (12), 2970-2980, 2010 | 846 | 2010 |
Computing and graphing highest density regions RJ Hyndman The American Statistician 50 (2), 120-126, 1996 | 839 | 1996 |
rmarkdown: Dynamic Documents for R J Allaire, Y Xie, J McPherson, J Luraschi, K Ushey, A Atkins, H Wickham, ... R package version 1 (11), 2018 | 713 | 2018 |
A note on the validity of cross-validation for evaluating autoregressive time series prediction C Bergmeir, RJ Hyndman, B Koo Computational Statistics & Data Analysis 120, 70-83, 2018 | 672 | 2018 |
Short-term load forecasting based on a semi-parametric additive model S Fan, RJ Hyndman IEEE transactions on power systems 27 (1), 134-141, 2011 | 597 | 2011 |
Optimal combination forecasts for hierarchical time series RJ Hyndman, RA Ahmed, G Athanasopoulos, HL Shang Computational statistics & data analysis 55 (9), 2579-2589, 2011 | 593 | 2011 |