Leveraging the mathematics of shape for solar magnetic eruption prediction V Deshmukh, TE Berger, E Bradley, JD Meiss Journal of Space Weather and Space Climate 10, 13, 2020 | 27 | 2020 |
Decreasing False-alarm Rates in CNN-based Solar Flare Prediction Using SDO/HMI Data V Deshmukh, N Flyer, K Van Der Sande, T Berger The Astrophysical Journal Supplement Series 260 (1), 9, 2022 | 15 | 2022 |
Using Curvature to Select the Time Lag for Delay Reconstruction V Deshmukh, E Bradley, J Garland, JD Meiss Chaos: An Interdisciplinary Journal of Nonlinear Science 30 (6), 12, 2020 | 12 | 2020 |
Comparing feature sets and machine-learning models for prediction of solar flares-Topology, physics, and model complexity V Deshmukh, S Baskar, TE Berger, E Bradley, JD Meiss Astronomy & Astrophysics 674, A159, 2023 | 8* | 2023 |
Towards automated extraction and characterization of scaling regions in dynamical systems V Deshmukh, E Bradley, J Garland, JD Meiss Chaos: An Interdisciplinary Journal of Nonlinear Science 31 (12), 18, 2021 | 5 | 2021 |
A MODULAR, GENERIC, LOW-COST ON-BOARD COMPUTER SYSTEM FOR NANO/PICO SATELLITE APPLICATIONS N Mhatre, M Karve, R Bedarkar, V Deshmukh Education 2011, 2007 | 5 | 2007 |
Shape-based Feature Engineering for Solar Flare Prediction V Deshmukh, T Berger, J Meiss, E Bradley Innovative Applications of Artificial Intelligence 2021 35 (17), 15293--15300, 2020 | 4 | 2020 |
Using scaling-region distributions to select embedding parameters V Deshmukh, R Meikle, E Bradley, JD Meiss, J Garland Physica D: Nonlinear Phenomena 446, 133674, 2023 | 3 | 2023 |
Using Unsupervised Machine Learning to Explore New Classification of Sunspot Active Regions SN Housseal, TE Berger, V Deshmukh AGU Fall Meeting Abstracts 2019, NG31A-0834, 2019 | 1 | 2019 |
A computational topology-based spatiotemporal analysis technique for honeybee aggregation G Gharooni-Fard, M Byers, V Deshmukh, E Bradley, C Mayo, CM Topaz, ... npj Complexity 1 (1), 3, 2024 | | 2024 |
Machine Learning (ML) Bloopers–What not to do when creating ML models N Flyer, T Berger, K van der Sande, A Liu, V Deshmukh AGU Fall Meeting Abstracts 2022, NG42A-02, 2022 | | 2022 |
Feature Vectors and Hybrid Machine Learning Architectures for Solar Flare Prediction using Magnetogram Data TE Berger, V Deshmukh, N Flyer, E Bradley, JD Meiss, K van der Sande AGU Fall Meeting Abstracts 2022, SH22F-2058, 2022 | | 2022 |
Self-attention networks for solar flare prediction using SDO/AIA EUV data and a novel AIA-based flare catalog K Van Der Sande, N Flyer, V Deshmukh, T Berger Third Triennial Earth-Sun Summit (TESS) 54 (7), 2022 | | 2022 |
Solar flare prediction with reduced false positives using a hybrid CNN-ERT machine learning model T Berger, N Flyer, V Deshmukh, K van der Sande American Astronomical Society Meeting# 240 54 (6), 431.02, 2022 | | 2022 |
A Persistent Homology Approach for Characterizing Honeybee Behavior during Food Exchange E Bradley, V Deshmukh, GG Fard, C Topaz, O Peleg 2022 Spring Western Sectional Meeting, 2022 | | 2022 |
Thank you to our 2021 peer reviewers N Lugaz, BA Carter, JL Gannon, M Hapgood, H Liu, TP O’Brien, ... Space Weather 20 (4), e2022SW003116, 2022 | | 2022 |
Comparing Solar Flare Irradiance in GOES X-ray and SDO/AIA EUV Data via Machine Learning Regression K van der Sande, N Flyer, V Deshmukh, T Berger Proceedings of the 2nd Machine Learning in Heliophysics, 12, 2022 | | 2022 |
Innovative Featurization and Modeling for Solar Flare Prediction VR Deshmukh University of Colorado at Boulder, 2022 | | 2022 |
Novel Machine Learning Architectures for Short-term Solar Flare Prediction with Decreased False Positive Rates T Berger, V Deshmukh, N Flyer, K van der Sande AGU Fall Meeting Abstracts 2021, NG41A-02, 2021 | | 2021 |
Classification of Solar Flare Magnitudes Using SDO/AIA Movies with 4D Convolutional Neural Networks K van der Sande, T Berger, N Flyer, V Deshmukh AGU Fall Meeting Abstracts 2021, NG45B-0571, 2021 | | 2021 |