Using interpretable machine learning to predict maternal and fetal outcomes TM Bosschieter, Z Xu, H Lan, BJ Lengerich, H Nori, K Sitcov, V Souter, ... arXiv preprint arXiv:2207.05322, 2022 | 7 | 2022 |
Interpretable Predictive Models to Understand Risk Factors for Maternal and Fetal Outcomes TM Bosschieter, Z Xu, H Lan, BJ Lengerich, H Nori, I Painter, V Souter, ... Journal of Healthcare Informatics Research 8 (1), 65-87, 2024 | 2 | 2024 |
Understanding risk factors for shoulder dystocia using interpretable machine learning H Lan, TM Bosschieter, Z Xu, B Lengerich, H Nori, K Sitcov, I Painter, ... American Journal of Obstetrics & Gynecology 228 (1), S753, 2023 | 2 | 2023 |
Combining multiple post-training techniques to achieve most efficient quantized LLMs S Sharify, Z Xu, X Wang arXiv preprint arXiv:2405.07135, 2024 | 1 | 2024 |
Unique insights into risk factors for antepartum stillbirth using explainable AI TM Bosschieter, H Lan, Z Xu, B Lengerich, H Nori, K Sitcov, I Painter, ... American Journal of Obstetrics & Gynecology 228 (1), S403-S404, 2023 | 1 | 2023 |
Predicting severe maternal morbidity at admission for delivery using intelligible machine learning Z Xu, TM Bosschieter, H Lan, B Lengerich, H Nori, K Sitcov, I Painter, ... American Journal of Obstetrics & Gynecology 228 (1), S404-S405, 2023 | 1 | 2023 |
Preterm preeclampsia prediction using intelligible machine learning TM Bosschieter, Z Xu, H Lan, B Lengerich, H Nori, K Sitcov, I Painter, ... American Journal of Obstetrics & Gynecology 228 (1), S409, 2023 | 1 | 2023 |
Self-Selected Attention Span for Accelerating Large Language Model Inference T Jin, Z Xu, S Sharify, X Wang arXiv preprint arXiv:2404.09336, 2024 | | 2024 |