New Cartesian grid methods for interface problems using the finite element formulation Z Li, T Lin, X Wu Numerische Mathematik 96, 61-98, 2003 | 508 | 2003 |
On the accuracy of the finite volume element method based on piecewise linear polynomials RE Ewing, T Lin, Y Lin SIAM Journal on Numerical Analysis 39 (6), 1865-1888, 2002 | 350 | 2002 |
Partially penalized immersed finite element methods for elliptic interface problems T Lin, Y Lin, X Zhang SIAM Journal on Numerical Analysis 53 (2), 1121-1144, 2015 | 222 | 2015 |
An immersed finite element space and its approximation capability Z Li, T Lin, Y Lin, RC Rogers Numerical Methods for Partial Differential Equations: An International …, 2004 | 216 | 2004 |
Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions X He, T Lin, Y Lin International Journal of numerical analysis and modeling 8 (2), 284-301, 2011 | 187 | 2011 |
Approximation capability of a bilinear immersed finite element space X He, T Lin, Y Lin Numerical Methods for Partial Differential Equations: An International …, 2008 | 146 | 2008 |
Three‐dimensional immersed finite element methods for electric field simulation in composite materials R Kafafy, T Lin, Y Lin, J Wang International journal for numerical methods in engineering 64 (7), 940-972, 2005 | 139 | 2005 |
The immersed finite volume element methods for the elliptic interface problems RE Ewing, Z Li, T Lin, Y Lin Mathematics and Computers in Simulation 50 (1-4), 63-76, 1999 | 134 | 1999 |
A class of parameter estimation techniques for fluid flow in porous media RE Ewing, T Lin Advances in water resources 14 (2), 89-97, 1991 | 134 | 1991 |
Immersed finite element methods for parabolic equations with moving interface X He, T Lin, Y Lin, X Zhang Numerical Methods for Partial Differential Equations 29 (2), 619-646, 2013 | 108 | 2013 |
A rectangular immersed finite element space for interface problems T Lin, Y Lin, R Rogers, ML Ryan Adv. Comput. Theory Pract 7, 107-114, 2001 | 98 | 2001 |
A locking-free immersed finite element method for planar elasticity interface problems T Lin, D Sheen, X Zhang Journal of Computational Physics 247, 228-247, 2013 | 91 | 2013 |
Linear and bilinear immersed finite elements for planar elasticity interface problems T Lin, X Zhang Journal of Computational and Applied Mathematics 236 (18), 4681-4699, 2012 | 81 | 2012 |
Petrov--Galerkin methods for linear Volterra integro-differential equations T Lin, Y Lin, M Rao, S Zhang SIAM Journal on Numerical Analysis 38 (3), 937-963, 2000 | 77 | 2000 |
The convergence of the bilinear and linear immersed finite element solutions to interface problems X He, T Lin, Y Lin Numerical Methods for Partial Differential Equations 28 (1), 312-330, 2012 | 74 | 2012 |
An immersed discontinuous finite element method for Stokes interface problems S Adjerid, N Chaabane, T Lin Computer Methods in Applied Mechanics and Engineering 293, 170-190, 2015 | 70 | 2015 |
A p-th degree immersed finite element for boundary value problems with discontinuous coefficients S Adjerid, T Lin Applied Numerical Mathematics 59 (6), 1303-1321, 2009 | 70 | 2009 |
Quadratic immersed finite element spaces and their approximation capabilities B Camp, T Lin, Y Lin, W Sun Advances in Computational Mathematics 24 (1), 81-112, 2006 | 64 | 2006 |
A group of immersed finite-element spaces for elliptic interface problems R Guo, T Lin IMA Journal of Numerical Analysis 39 (1), 482-511, 2019 | 63 | 2019 |
A 3D immersed finite element method with non-homogeneous interface flux jump for applications in particle-in-cell simulations of plasma–lunar surface interactions D Han, P Wang, X He, T Lin, J Wang Journal of Computational Physics 321, 965-980, 2016 | 62 | 2016 |