Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation AM Appel, JE Bercaw, AB Bocarsly, H Dobbek, DL DuBois, M Dupuis, ... Chemical reviews 113 (8), 6621-6658, 2013 | 2082 | 2013 |
Small molecule mimics of hydrogenases: hydrides and redox F Gloaguen, TB Rauchfuss Chemical Society Reviews 38 (1), 100-108, 2009 | 703 | 2009 |
Hydrogenase enzymes and their synthetic models: the role of metal hydrides D Schilter, JM Camara, MT Huynh, S Hammes-Schiffer, TB Rauchfuss Chemical reviews 116 (15), 8693-8749, 2016 | 559 | 2016 |
Efficient production of the liquid fuel 2, 5‐dimethylfuran from fructose using formic acid as a reagent T Thananatthanachon, TB Rauchfuss Angewandte Chemie 37 (122), 6766-6768, 2010 | 533 | 2010 |
Biomimetic hydrogen evolution catalyzed by an iron carbonyl thiolate F Gloaguen, JD Lawrence, TB Rauchfuss Journal of the American Chemical Society 123 (38), 9476-9477, 2001 | 519 | 2001 |
Metal complexes of hemilabile ligands. Reactivity and structure of dichlorobis (o-(diphenylphosphino) anisole) ruthenium (II) JC Jeffrey, TB Rauchfuss Inorganic Chemistry 18 (10), 2658-2666, 1979 | 511 | 1979 |
Iron carbonyl sulfides, formaldehyde, and amines condense to give the proposed azadithiolate cofactor of the Fe-only hydrogenases H Li, TB Rauchfuss Journal of the American Chemical Society 124 (5), 726-727, 2002 | 429 | 2002 |
Using nature’s blueprint to expand catalysis with Earth-abundant metals RM Bullock, JG Chen, L Gagliardi, PJ Chirik, OK Farha, CH Hendon, ... Science 369 (6505), eabc3183, 2020 | 374 | 2020 |
Combining acid–base, redox and substrate binding functionalities to give a complete model for the [FeFe]-hydrogenase JM Camara, TB Rauchfuss Nature chemistry 4 (1), 26-30, 2012 | 357 | 2012 |
First generation analogues of the binuclear site in the Fe-only hydrogenases: Fe2 (µ-SR) 2 (CO) 4 (CN) 2 2 M Schmidt, SM Contakes, TB Rauchfuss J. Am. Chem. Soc 121, 9736-9737, 1999 | 354 | 1999 |
Diiron Azadithiolates as Models for the Iron‐Only Hydrogenase Active Site: Synthesis, Structure, and Stereoelectronics JD Lawrence, H Li, TB Rauchfuss, M Bénard, MM Rohmer Angewandte Chemie 113 (9), 1818-1821, 2001 | 349 | 2001 |
Synthetic and structural studies on [Fe2 (SR) 2 (CN) x (CO) 6-x] x-as active site models for Fe-only hydrogenases F Gloaguen, JD Lawrence, M Schmidt, SR Wilson, TB Rauchfuss Journal of the American Chemical Society 123 (50), 12518-12527, 2001 | 341 | 2001 |
Transition metal polysulfides: coordination compounds with purely inorganic chelate ligands M Draganjac, TB Rauchfuss Angewandte Chemie International Edition in English 24 (9), 742-757, 1985 | 314 | 1985 |
Synthesis of diiron (I) dithiolato carbonyl complexes Y Li, TB Rauchfuss Chemical reviews 116 (12), 7043-7077, 2016 | 284 | 2016 |
The coordination chemistry of thiophenes TB Rauchfuss Progress in inorganic chemistry, 259-329, 1991 | 281 | 1991 |
Bimetallic carbonyl thiolates as functional models for Fe-only hydrogenases F Gloaguen, JD Lawrence, TB Rauchfuss, M Bénard, MM Rohmer Inorganic chemistry 41 (25), 6573-6582, 2002 | 278 | 2002 |
Synthetic models for the active site of the [FeFe]-hydrogenase: catalytic proton reduction and the structure of the doubly protonated intermediate ME Carroll, BE Barton, TB Rauchfuss, PJ Carroll Journal of the American Chemical Society 134 (45), 18843-18852, 2012 | 277 | 2012 |
Diiron azadithiolates as models for the [FeFe]-hydrogenase active site and paradigm for the role of the second coordination sphere TB Rauchfuss Accounts of chemical research 48 (7), 2107-2116, 2015 | 262 | 2015 |
Research on soluble metal sulfides: from polysulfido complexes to functional models for the hydrogenases TB Rauchfuss Inorganic chemistry 43 (1), 14-26, 2004 | 246 | 2004 |
Hydride-containing models for the active site of the nickel− iron hydrogenases BE Barton, TB Rauchfuss Journal of the American Chemical Society 132 (42), 14877-14885, 2010 | 241 | 2010 |