QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors K Khan, PM Khan, G Lavado, C Valsecchi, J Pasqualini, D Baderna, ... Chemosphere 229, 8-17, 2019 | 89 | 2019 |
Consensus versus individual QSARs in classification: comparison on a large-scale case study C Valsecchi, F Grisoni, V Consonni, D Ballabio Journal of chemical information and modeling 60 (3), 1215-1223, 2020 | 37 | 2020 |
NURA: a curated dataset of nuclear receptor modulators C Valsecchi, F Grisoni, S Motta, L Bonati, D Ballabio Toxicology and applied pharmacology 407, 115244, 2020 | 20 | 2020 |
Predicting molecular activity on nuclear receptors by multitask neural networks C Valsecchi, M Collarile, F Grisoni, R Todeschini, D Ballabio, V Consonni Journal of Chemometrics 36 (2), e3325, 2022 | 19 | 2022 |
Structural alerts for the identification of bioaccumulative compounds C Valsecchi, F Grisoni, V Consonni, D Ballabio Integrated Environmental Assessment and Management 15 (1), 19-28, 2019 | 19 | 2019 |
Deep learning applied to SEM images for supporting marine coralline algae classification G Piazza, C Valsecchi, G Sottocornola Diversity 13 (12), 640, 2021 | 12 | 2021 |
Parsimonious optimization of multitask neural network hyperparameters C Valsecchi, V Consonni, R Todeschini, ME Orlandi, F Gosetti, D Ballabio Molecules 26 (23), 7254, 2021 | 12 | 2021 |
Activity cliffs and structural cliffs for categorical responses R Todeschini, C Valsecchi MATCH Commun Math Comput Chem 80, 283-294, 2018 | 4 | 2018 |
Multi-task neural networks and molecular fingerprints to enhance compound identification from LC-MS/MS data V Consonni, F Gosetti, V Termopoli, R Todeschini, C Valsecchi, ... Molecules 27 (18), 5827, 2022 | 3 | 2022 |
Evaluation of classification performances of minimum spanning trees by 13 different metrics R Todeschini, C Valsecchi MATCH communications in mathematical and in computer chemistry 87 (2), 273-298, 2022 | 2 | 2022 |
Deep Ranking Analysis by Power Eigenvectors (DRAPE): A study on the human, environmental and economic wellbeing of 154 countries C Valsecchi, R Todeschini Measuring and Understanding Complex Phenomena: Indicators and their Analysis …, 2021 | 2 | 2021 |
Deep Ranking Analysis by Power Eigenvectors (DRAPE): a polypharmacology case study C Valsecchi, D Ballabio, V Consonni, R Todeschini Chemometrics and Intelligent Laboratory Systems 203, 104001, 2020 | 2 | 2020 |
Similarity/Diversity Indices on Incidence Matrices Containing Missing Values C Valsecchi, R Todeschini MATCH Communications in Mathematical and in Computer Chemistry 83 (2), 239-260, 2020 | 2 | 2020 |
Multitask Learning for Quantitative Structure–Activity Relationships: A Tutorial C Valsecchi, F Grisoni, V Consonni, D Ballabio, R Todeschini Machine Learning and Deep Learning in Computational Toxicology, 199-220, 2023 | 1 | 2023 |
Expanding antineoplastic drugs surface monitoring profiles: enhancing of zwitterionic hydrophilic interaction methods S Dugheri, N Mucci, D Squillaci, E Bucaletti, G Cappelli, L Trevisani, ... Separations 9 (2), 34, 2022 | 1 | 2022 |
Comparison of machine learning approaches for the classification of elution profiles G Baccolo, H Yu, C Valsecchi, D Ballabio, R Bro Chemometrics and Intelligent Laboratory Systems 243, 105002, 2023 | | 2023 |
Advancing the prediction of Nuclear Receptor modulators through machine learning methods C Valsecchi Università degli Studi di Milano-Bicocca, 2022 | | 2022 |
Nuclear receptor modulators: Catching information by machine learning C Valsecchi, F Grisoni, V Consonni, D Ballabio, R Todeschini Biomedical Science and Engineering 2 (1), 2021 | | 2021 |
Enhanced LC-MS/MS spectra matching through multitask neural networks and molecular fingerprints C Valsecchi, G Baccolo, M Caserta, M Barbagallo, F Gosetti, V Consonni, ... | | 2021 |
Classification of coralline algae using deep learning techniques on SEM images G Piazza, C Valsecchi, G Sottocornola, D Basso BE GEO SCIENTISTS 2021 Abstract book, 181-181, 2021 | | 2021 |