Birkhoff normal form for partial differential equations with tame modulus D Bambusi, B Grébert | 271 | 2006 |
KAM for the nonlinear beam equation LH Eliasson, B Grébert, SB Kuksin Geometric and Functional Analysis 26, 1588-1715, 2016 | 145* | 2016 |
Almost global existence for Hamiltonian semilinear Klein‐Gordon equations with small Cauchy data on Zoll manifolds D Bambusi, JM Delort, B Grébert, J Szeftel Communications on Pure and Applied Mathematics: A Journal Issued by the …, 2007 | 144 | 2007 |
The defocusing NLS equation and its normal form B Grébert, T Kappeler, T Kappeler European Mathematical Society, 2014 | 124* | 2014 |
KAM for the quantum harmonic oscillator B Grébert, L Thomann Communications in mathematical physics 307 (2), 383-427, 2011 | 112 | 2011 |
Birkhoff normal form and Hamiltonian PDEs B Grébert Partial differential equations and applications., 1-46, 2007 | 93 | 2007 |
Reducibility of the quantum harmonic oscillator in d-dimensions with polynomial time-dependent perturbation D Bambusi, B Grébert, A Maspero, D Robert Analysis & PDE 11 (3), 775-799, 2017 | 87 | 2017 |
A Nekhoroshev-type theorem for the nonlinear Schrödinger equation on the torus E Faou, B Grébert Analysis & PDE 6 (6), 1243-1262, 2013 | 71 | 2013 |
Normal forms for semilinear quantum harmonic oscillators B Grébert, R Imekraz, E Paturel Communications in Mathematical Physics 291 (3), 763-798, 2009 | 66 | 2009 |
Growth of Sobolev norms for abstract linear Schrödinger equations D Bambusi, B Grébert, A Maspero, D Robert J. Eur. Math. Soc.(JEMS) 23 (2), 557-583, 2021 | 63 | 2021 |
Resonant dynamics for the quintic nonlinear Schrödinger equation B Grébert, L Thomann Annales de l'Institut Henri Poincaré C, Analyse non linéaire 29 (3), 455-477, 2012 | 63 | 2012 |
KAM for the Klein Gordon equation on B Grébert, E Paturel Bollettino dell'Unione Matematica Italiana 9, 237-288, 2016 | 62* | 2016 |
Gaps of one dimensional periodic AKNS systems B Grébert, JC Guillot Walter de Gruyter, Berlin/New York 5 (Jahresband), 459-504, 1993 | 54 | 1993 |
On reducibility of Quantum Harmonic Oscillator on with quasiperiodic in time potential E Paturel, B Grébert Annales de la Faculté des sciences de Toulouse, 2019 | 49* | 2019 |
Hamiltonian interpolation of splitting approximations for nonlinear PDEs E Faou, B Grébert Foundations of Computational Mathematics 11, 381-415, 2011 | 47 | 2011 |
Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. Part I. Finite-dimensional discretization E Faou, B Grébert, E Paturel Numerische Mathematik 114, 429-458, 2010 | 46 | 2010 |
Reconstruction of a potential on the line that is a priori known on the half line B Grebert, R Weder SIAM Journal on Applied Mathematics 55 (1), 242-254, 1995 | 44 | 1995 |
Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. Part II. Abstract splitting E Faou, B Grébert, E Paturel Numerische Mathematik 114, 459-490, 2010 | 41 | 2010 |
Gap estimates of the spectrum of the Zakharov-Shabat system B Grébert, T Kappeler, B Mityagin Applied mathematics letters 11 (4), 95-97, 1998 | 40 | 1998 |
Rational normal forms and stability of small solutions to nonlinear Schrödinger equations J Bernier, E Faou, B Grebert Annals of PDE 6 (2), 14, 2020 | 37 | 2020 |