关注
Guanghui Han
Guanghui Han
School of Computer Science, Beijing Institute of Technology
在 bit.edu.cn 的电子邮件经过验证
标题
引用次数
引用次数
年份
Attention-Based DenseUnet Network With Adversarial Training for Skin Lesion Segmentation
Z Wei, H Song, L Chen, Q Li, G Han
IEEE Access, 2019
592019
The LISS—a public database of common imaging signs of lung diseases for computer-aided detection and diagnosis research and medical education
G Han, X Liu, F Han, INT Santika, Y Zhao, X Zhao, C Zhou
IEEE Transactions on Biomedical Engineering 62 (2), 648-656, 2014
592014
Hybrid resampling and multi-feature fusion for automatic recognition of cavity imaging sign in lung CT
G Han, X Liu, H Zhang, G Zheng, NQ Soomro, M Wang, W Liu
Future Generation Computer Systems 99, 2019
382019
Survey on Medical Image Computer Aided Detection and Diagnosis Systems(in Chinese)
G Zheng, X Liu, G Han
Journal of Software 29 (5), 1471-1514, 2018
36*2018
Automatic recognition of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNNs
G Han, X Liu, G Zheng, M Wang, S Huang
Medical & biological engineering & computing 56, 2201-2212, 2018
352018
An inception module CNN classifiers fusion method on pulmonary nodule diagnosis by signs
G Zheng, G Han, NQ Soomro
Tsinghua Science and Technology 25 (3), 368-383, 2019
342019
Attentive boundary aware network for multi-scale skin lesion segmentation with adversarial training
Z Wei, F Shi, H Song, W Ji, G Han
Multimedia Tools and Applications 79, 27115-27136, 2020
162020
A pyramid input augmented multi-scale CNN for GGO detection in 3D lung CT images
W Liu, X Liu, X Luo, M Wang, G Han, X Zhao, Z Zhu
Pattern Recognition 136, 109261, 2023
152023
A Study of Microscopic Traffic Simulation Based on the SUMO Platform
G HAN
Computer Engineering & Science 34 (7), 195, 2012
152012
AttR2U-Net: A fully automated model for MRI nasopharyngeal carcinoma segmentation based on spatial attention and residual recurrent convolution
J Zhang, L Gu, G Han, X Liu
Frontiers in Oncology 11, 816672, 2022
142022
DCNet: Densely connected deep convolutional encoder–decoder network for nasopharyngeal carcinoma segmentation
Y Li, G Han, X Liu
Sensors 21 (23), 7877, 2021
122021
Lightweight compound scaling network for nasopharyngeal carcinoma segmentation from mr images
Y Liu, G Han, X Liu
Sensors 22 (15), 5875, 2022
82022
Content-sensitive superpixel segmentation via self-organization-map neural network
M Wang, X Liu, NQ Soomro, G Han, W Liu
Journal of Visual Communication and Image Representation 63, 102572, 2019
82019
3D GGO candidate extraction in lung CT images using multilevel thresholding on supervoxels
S Huang, X Liu, G Han, X Zhao, Y Zhao, C Zhou
Medical Imaging 2018: Computer-Aided Diagnosis 10575, 684-691, 2018
42018
Automated Detection of Lesion Region in Lung Computed Tomography Images: A Review(in Chinese)
Guanghui han, Xiabi Liu, Guangyuan zheng
Acta Automatica Sinica 43 (12), 2071-2090, 2017
42017
Empirical driven automatic detection of lobulation imaging signs in lung CT
G Han, X Liu, N Qadeer Soomro, J Sun, Y Zhao, X Zhao, C Zhou
BioMed Research International, 2017
42017
A Novel Computer‐Aided Diagnosis Scheme on Small Annotated Set: G2C‐CAD
G Zheng, G Han, NQ Soomro, L Ma, F Zhang, Y Zhao, X Zhao, C Zhou
BioMed Research International 2019 (1), 6425963, 2019
32019
A new challenging image dataset with simple background for evaluating and developing co-segmentation algorithms
MengqiaoYu, XiabiLiu, MurongWang, GuanghuiHan
Signal Processing: Image Communication, 2020
22020
Deep Reinforcement Learning Method for 3D-CT Nasopharyngeal Cancer Localization with Prior Knowledge
G Han, Y Kong, H Wu, H Li
Applied Sciences 13 (14), 7999, 2023
12023
CAFS: An Attention-Based Co-Segmentation Semi-Supervised Method for Nasopharyngeal Carcinoma Segmentation
Y Chen, G Han, T Lin, X Liu
Sensors 22 (13), 5053, 2022
12022
系统目前无法执行此操作,请稍后再试。
文章 1–20