Machine learning and deep learning applications in microbiome research R Hernández Medina, S Kutuzova, KN Nielsen, J Johansen, LH Hansen, ... ISME Communications 2 (1), 98, 2022 | 96 | 2022 |
Cameo: a Python library for computer aided metabolic engineering and optimization of cell factories JGR Cardoso, K Jensen, C Lieven, AS Lærke Hansen, S Galkina, ... ACS synthetic biology 7 (4), 1163-1166, 2018 | 70 | 2018 |
SmartPeak automates targeted and quantitative metabolomics data processing S Kutuzova, P Colaianni, H Rost, T Sachsenberg, O Alka, O Kohlbacher, ... Analytical chemistry 92 (24), 15968-15974, 2020 | 25 | 2020 |
Multimodal Variational Autoencoders for Semi-Supervised Learning: In Defense of Product-of-Experts S Kutuzova, O Krause, D McCloskey, M Nielsen, C Igel arXiv preprint arXiv:2101.07240, 2021 | 16 | 2021 |
Precision diagnostic approach to predict 5-year risk for microvascular complications in type 1 diabetes N Al-Sari, S Kutuzova, T Suvitaival, P Henriksen, F Pociot, P Rossing, ... EBioMedicine 80, 2022 | 9 | 2022 |
OpenMS 3 enables reproducible analysis of large-scale mass spectrometry data J Pfeuffer, C Bielow, S Wein, K Jeong, E Netz, A Walter, O Alka, L Nilse, ... Nature methods 21 (3), 365-367, 2024 | 8 | 2024 |
Adversarial and variational autoencoders improve metagenomic binning PP Líndez, J Johansen, S Kutuzova, AI Sigurdsson, JN Nissen, ... Communications Biology 6 (1), 1073, 2023 | 7 | 2023 |
Bi-modal variational autoencoders for metabolite identification using tandem mass spectrometry S Kutuzova, C Igel, M Nielsen, D McCloskey bioRxiv, 2021.08. 03.454944, 2021 | 6 | 2021 |
Использование методов машинного обучения для построения оптимального портфеля ценных бумаг СА Галкина International Journal of Open Information Technologies 2 (6), 14-20, 2014 | 2 | 2014 |
Taxometer: Improving taxonomic classification of metagenomics contigs S Kutuzova, M Nielsen, P Piera, JN Nissen, S Rasmussen Nature Communications 15 (1), 1-9, 2024 | | 2024 |
HyperLeaf2024-A Hyperspectral Imaging Dataset for Classification and Regression of Wheat Leaves WM Laprade, P Pieta, S Kutuzova, JC Westergaard, M Nielsen, ... Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2024 | | 2024 |
OpenMS 3 expands the frontiers of open-source computational mass spectrometry T Sachsenberg, J Pfeuffer, C Bielow, S Wein, K Jeong, E Netz, A Walter, ... | | 2023 |
Machine learning methods for metabolomics data analysis S Kutuzova | | 2022 |
DD-DeCaF: Data-Driven Design of Cell Factories and Communities ME Beber, D Dannaher, M Fodor, S Galkina, NH Redestig, ... DTU Sustain 2017, R-3, 2017 | | 2017 |