Cylindrical and Asymmetrical 3D Convolution Networks for LiDAR Segmentation X Zhu*, H Zhou*, T Wang, F Hong, Y Ma, W Li, H Li, D Lin CVPR 2021 (Oral), 2021 | 502 | 2021 |
FCOS3D: Fully Convolutional One-Stage Monocular 3D Object Detection T Wang, X Zhu, J Pang, D Lin International Conference on Computer Vision Workshops (ICCVW), 2021 | 498 | 2021 |
TrafficPredict: Trajectory prediction for heterogeneous traffic-agents Y Ma*, X Zhu*, S Zhang, R Yang, W Wang, D Manocha AAAI 2019, 2019 | 488 | 2019 |
TransFusion: Robust LiDAR-Camera Fusion for 3D Object Detection with Transformers X Bai, Z Hu, X Zhu, Q Huang, Y Chen, H Fu, CL Tai CVPR 2022, 2022 | 479 | 2022 |
Adapting object detectors via selective cross-domain alignment X Zhu, J Pang, C Yang, J Shi, D Lin Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019 | 381 | 2019 |
Depth Completion from Sparse LiDAR Data with Depth-Normal Constraints Y Xu, X Zhu, J Shi, G Zhang, H Bao, H Li ICCV 2019, 2019 | 244 | 2019 |
Probabilistic and geometric depth: Detecting objects in perspective T Wang, X Zhu, J Pang, D Lin Conference on Robot Learning (CoRL), 2021 | 234 | 2021 |
Cylinder3d: An effective 3d framework for driving-scene lidar semantic segmentation H Zhou, X Zhu, X Song, Y Ma, Z Wang, H Li, D Lin arXiv preprint arXiv:2008.01550, 2020 | 172 | 2020 |
Pose Guided Human Video Generation C Yang, Z Wang, X Zhu, C Huang, J Shi, D Lin European Conference on Computer Vision (ECCV) 2018, 2018 | 152 | 2018 |
Point-to-voxel knowledge distillation for lidar semantic segmentation Y Hou, X Zhu, Y Ma, CC Loy, Y Li Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2022 | 140 | 2022 |
Penalizing Top Performers: Conservative Loss for Semantic Segmentation Adaptation X Zhu, H Zhou, C Yang, J Shi, D Lin European Conference on Computer Vision (ECCV) 2018, 2018 | 127 | 2018 |
SSN: Shape Signature Networks for Multi-class Object Detection from Point Clouds X Zhu, Y Ma, T Wang, Y Xu, J Shi, D Lin European Conference on Computer Vision (ECCV) 2020, 2020 | 117 | 2020 |
Dependency Exploitation: A Unified CNN-RNN Approach for Visual Emotion Recognition X Zhu, L Li, W Zhang, T Rao, M Xu, Q Huang, D Xu Proceedings of the Internal Joint Conference on Artificial Intelligence …, 2017 | 112 | 2017 |
LiDAR-based Panoptic Segmentation via Dynamic Shifting Network F Hong, H Zhou, X Zhu, H Li, Z Liu CVPR 2021, 2021 | 104 | 2021 |
Cylindrical and asymmetrical 3d convolution networks for lidar-based perception X Zhu, H Zhou, T Wang, F Hong, W Li, Y Ma, H Li, R Yang, D Lin IEEE Transactions on Pattern Analysis and Machine Intelligence 44 (10), 6807 …, 2021 | 96 | 2021 |
CLIP2Scene: Towards Label-efficient 3D Scene Understanding by CLIP R Chen, Y Liu, L Kong, X Zhu, Y Ma, Y Li, Y Hou, Y Qiao, W Wang CVPR 2023, 2023 | 92 | 2023 |
Vision-centric bev perception: A survey Y Ma, T Wang, X Bai, H Yang, Y Hou, Y Wang, Y Qiao, R Yang, ... arXiv preprint arXiv:2208.02797, 2022 | 91 | 2022 |
Rethinking range view representation for lidar segmentation L Kong, Y Liu, R Chen, Y Ma, X Zhu, Y Li, Y Hou, Y Qiao, Z Liu ICCV 2023, 2023 | 85 | 2023 |
Not all areas are equal: Transfer learning for semantic segmentation via hierarchical region selection R Sun*, X Zhu*, C Wu, C Huang, J Shi, L Ma Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2019 | 81 | 2019 |
Tensor Low-Rank Reconstruction for Semantic Segmentation W Chen, X Zhu, R Sun, J He, R Li, X Shen, B Yu European Conference on Computer Vision (ECCV) 2020, 2020 | 77 | 2020 |