关注
Charles Godfrey
Charles Godfrey
Machine Learning Scientist, Thomson Reuters Labs
在 thomsonreuters.com 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
On the symmetries of deep learning models and their internal representations
C Godfrey, D Brown, T Emerson, H Kvinge
Advances in Neural Information Processing Systems 35, 11893-11905, 2022
252022
Robustness of edited neural networks
D Brown, C Godfrey, C Nizinski, J Tu, H Kvinge
ICLR 2023 Workshop on Mathematical and Empirical Understanding of Foundation …, 2023
112023
Exploring the Representation Manifolds of Stable Diffusion Through the Lens of Intrinsic Dimension
H Kvinge, D Brown, C Godfrey
arXiv preprint arXiv:2302.09301, 2023
42023
Understanding the Inner Workings of Language Models Through Representation Dissimilarity
D Brown, C Godfrey, N Konz, J Tu, H Kvinge
arXiv preprint arXiv:2310.14993, 2023
32023
Fast computation of permutation equivariant layers with the partition algebra
C Godfrey, MG Rawson, D Brown, H Kvinge
arXiv preprint arXiv:2303.06208, 2023
32023
Pure subrings of Du Bois singularities are Du Bois singularities
C Godfrey, T Murayama
arXiv preprint arXiv:2208.14429, 2022
32022
How many dimensions are required to find an adversarial example?
C Godfrey, H Kvinge, E Bishoff, M Mckay, D Brown, T Doster, E Byler
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2023
22023
Neural Image Compression: Generalization, Robustness, and Spectral Biases
K Lieberman, J Diffenderfer, C Godfrey, B Kailkhura
Advances in Neural Information Processing Systems 36, 2024
12024
Impact of model architecture on robustness and interpretability of multispectral deep learning models
C Godfrey, E Bishoff, M McKay, E Byler
Algorithms, Technologies, and Applications for Multispectral and …, 2023
12023
Edit at your own risk: evaluating the robustness of edited models to distribution shifts
D Brown, C Godfrey, C Nizinski, J Tu, H Kvinge
arXiv preprint arXiv:2303.00046, 2023
12023
Neural frames: A Tool for Studying the Tangent Bundles Underlying Image Datasets and How Deep Learning Models Process Them
H Kvinge, G Jorgenson, D Brown, C Godfrey, T Emerson
arXiv preprint arXiv:2211.10558, 2022
12022
Fiber Bundle Morphisms as a Framework for Modeling Many-to-Many Maps
E Coda, N Courts, C Wight, L Truong, WJ Choi, C Godfrey, T Emerson, ...
Topological, Algebraic and Geometric Learning Workshops 2022, 79-85, 2022
12022
Adapting self-supervised learning to the hyperspectral domain: methods, challenges, and lessons learned
N Kono, EB Byler, CW Godfrey, TJ Doster, TH Emerson
Algorithms, Technologies, and Applications for Multispectral and …, 2024
2024
Internal Representations of Vision Models Through the Lens of Frames on Data Manifolds
H Kvinge, G Jorgenson, D Brown, C Godfrey, T Emerson
NeurIPS 2023 Workshop on Symmetry and Geometry in Neural Representations, 2023
2023
Attributing Learned Concepts in Neural Networks to Training Data
N Konz, C Godfrey, M Shapiro, J Tu, H Kvinge, D Brown
arXiv preprint arXiv:2310.03149, 2023
2023
Gumby: Quantifying multi-modal model resiliency
EB Byler, EA Bishoff, CW Godfrey, MA McKay
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States), 2023
2023
Impact of architecture on robustness and interpretability of multispectral deep neural networks
C Godfrey, E Bishoff, M McKay, E Byler
arXiv preprint arXiv:2309.12463, 2023
2023
Quantifying the robustness of deep multispectral segmentation models against natural perturbations and data poisoning
E Bishoff, C Godfrey, M McKay, E Byler
Algorithms, Technologies, and Applications for Multispectral and …, 2023
2023
Correspondences in log Hodge cohomology
C Godfrey
arXiv preprint arXiv:2301.00517, 2023
2023
Testing predictions of representation cost theory with CNNs
C Godfrey, E Bishoff, M Mckay, D Brown, G Jorgenson, H Kvinge, E Byler
arXiv preprint arXiv:2210.01257, 2022
2022
系统目前无法执行此操作,请稍后再试。
文章 1–20