Processing and assessment of spectrometric, stereoscopic imagery collected using a lightweight UAV spectral camera for precision agriculture E Honkavaara, H Saari, J Kaivosoja, I Pölönen, T Hakala, P Litkey, ... Remote Sensing 5 (10), 5006-5039, 2013 | 565 | 2013 |
Individual tree detection and classification with UAV-based photogrammetric point clouds and hyperspectral imaging O Nevalainen, E Honkavaara, S Tuominen, N Viljanen, T Hakala, X Yu, ... Remote sensing 9 (3), 185, 2017 | 461 | 2017 |
Tree species classification of drone hyperspectral and RGB imagery with deep learning convolutional neural networks S Nezami, E Khoramshahi, O Nevalainen, I Pölönen, E Honkavaara Remote Sensing 12 (7), 1070, 2020 | 158 | 2020 |
Remote sensing of 3-D geometry and surface moisture of a peat production area using hyperspectral frame cameras in visible to short-wave infrared spectral ranges onboard a … E Honkavaara, MA Eskelinen, I Pölönen, H Saari, H Ojanen, R Mannila, ... IEEE Transactions on Geoscience and Remote Sensing 54 (9), 5440-5454, 2016 | 93 | 2016 |
Spectral imaging from UAVs under varying illumination conditions T Hakala, E Honkavaara, H Saari, J Mäkynen, J Kaivosoja, L Pesonen, ... International Archives of the Photogrammetry, Remote Sensing and Spatial …, 2013 | 86 | 2013 |
Hyperspectral imaging based biomass and nitrogen content estimations from light-weight UAV I Pölönen, H Saari, J Kaivosoja, E Honkavaara, L Pesonen Remote sensing for agriculture, ecosystems, and hydrology XV 8887, 141-149, 2013 | 79 | 2013 |
Assessment of classifiers and remote sensing features of hyperspectral imagery and stereo-photogrammetric point clouds for recognition of tree species in a forest area of high … S Tuominen, R Näsi, E Honkavaara, A Balazs, T Hakala, N Viljanen, ... Remote Sensing 10 (5), 714, 2018 | 68 | 2018 |
Unmanned aerial system imagery and photogrammetric canopy height data in area-based estimation of forest variables S Tuominen, A Balazs, H Saari, I Pölönen, J Sarkeala, R Viitala Silva Fennica 49 (5), 2015 | 67 | 2015 |
Detecting field cancerization using a hyperspectral imaging system N Neittaanmäki‐Perttu, M Grönroos, T Tani, I Pölönen, A Ranki, ... Lasers in surgery and medicine 45 (7), 410-417, 2013 | 61 | 2013 |
Using VIS/NIR and IR spectral cameras for detecting and separating crime scene details J Kuula, I Pölönen, HH Puupponen, T Selander, T Reinikainen, ... Sensors, and Command, Control, Communications, and Intelligence (C3I …, 2012 | 53 | 2012 |
Miniaturized hyperspectral imager calibration and UAV flight campaigns H Saari, I Pölönen, H Salo, E Honkavaara, T Hakala, C Holmlund, ... Sensors, systems, and next-generation satellites xvii 8889, 448-459, 2013 | 51 | 2013 |
A case study of a precision fertilizer application task generation for wheat based on classified hyperspectral data from UAV combined with farm history data J Kaivosoja, L Pesonen, J Kleemola, I Pölönen, H Salo, E Honkavaara, ... Remote Sensing for Agriculture, Ecosystems, and Hydrology XV 8887, 118-127, 2013 | 45 | 2013 |
Delineating margins of lentigo maligna using a hyperspectral imaging system N Neittaanmäki-Perttu, M Grönroos, L Jeskanen, I Pölönen, A Ranki, ... Acta dermato-venereologica 95 (5), 2015 | 40 | 2015 |
Delineation of malignant skin tumors by hyperspectral imaging using diffusion maps dimensionality reduction V Zheludev, I Pölönen, N Neittaanmäki-Perttu, A Averbuch, ... Biomedical Signal Processing and Control 16, 48-60, 2015 | 37 | 2015 |
Hyperspectral UAV-imagery and photogrammetric canopy height model in estimating forest stand variables S Tuominen, A Balazs, E Honkavaara, I Pölönen, H Saari, T Hakala, ... Silva Fennica 51 (5), 2017 | 36 | 2017 |
Hyperspectral imaging system in the delineation of Ill‐defined basal cell carcinomas: a pilot study M Salmivuori, N Neittaanmäki, I Pölönen, L Jeskanen, E Snellman, ... Journal of the European Academy of Dermatology and Venereology 33 (1), 71-78, 2019 | 33 | 2019 |
DeepFake knee osteoarthritis X-rays from generative adversarial neural networks deceive medical experts and offer augmentation potential to automatic classification F Prezja, J Paloneva, I Pölönen, E Niinimäki, S Äyrämö Scientific Reports 12 (1), 18573, 2022 | 29 | 2022 |
Convolutional neural networks in skin cancer detection using spatial and spectral domain I Pölönen, S Rahkonen, L Annala, N Neittaanmäki Photonics in Dermatology and Plastic Surgery 2019 10851, 21-28, 2019 | 26 | 2019 |
Autonomous hyperspectral UAS photogrammetry for environmental monitoring applications E Honkavaara, T Hakala, L Markelin, A Jaakkola, H Saari, H Ojanen, ... ISPRS Archives, 2014 | 26 | 2014 |
Hyperspectral imaging reveals spectral differences and can distinguish malignant melanoma from pigmented basal cell carcinomas: a pilot study J Räsänen, M Salmivuori, I Pölönen, M Grönroos, N Neittaanmäki Acta dermato-venereologica 101 (2), 2021 | 25 | 2021 |