Wasserstein weisfeiler-lehman graph kernels M Togninalli, E Ghisu, F Llinares-López, B Rieck, K Borgwardt Advances in neural information processing systems 32, 2019 | 240 | 2019 |
Efficient and modular implicit differentiation M Blondel, Q Berthet, M Cuturi, R Frostig, S Hoyer, F Llinares-López, ... Advances in neural information processing systems 35, 5230-5242, 2022 | 208 | 2022 |
Prediction of human population responses to toxic compounds by a collaborative competition F Eduati, LM Mangravite, T Wang, H Tang, JC Bare, R Huang, T Norman, ... Nature biotechnology 33 (9), 933-940, 2015 | 119 | 2015 |
Graph kernels: State-of-the-art and future challenges K Borgwardt, E Ghisu, F Llinares-López, L O’Bray, B Rieck Foundations and Trends® in Machine Learning 13 (5-6), 531-712, 2020 | 114 | 2020 |
Fast and memory-efficient significant pattern mining via permutation testing F Llinares-López, M Sugiyama, L Papaxanthos, K Borgwardt Proceedings of the 21th ACM SIGKDD international conference on knowledge …, 2015 | 82 | 2015 |
DeepConsensus improves the accuracy of sequences with a gap-aware sequence transformer G Baid, DE Cook, K Shafin, T Yun, F Llinares-López, Q Berthet, ... Nature Biotechnology 41 (2), 232-238, 2023 | 71 | 2023 |
graphkernels: R and Python packages for graph comparison M Sugiyama, ME Ghisu, F Llinares-López, K Borgwardt Bioinformatics 34 (3), 530-532, 2018 | 70 | 2018 |
Significant subgraph mining with multiple testing correction M Sugiyama, FL López, N Kasenburg, KM Borgwardt Proceedings of the 2015 SIAM international conference on data mining, 37-45, 2015 | 58* | 2015 |
Genome-wide detection of intervals of genetic heterogeneity associated with complex traits F Llinares-López, DG Grimm, DA Bodenham, U Gieraths, M Sugiyama, ... Bioinformatics 31 (12), i240-i249, 2015 | 46 | 2015 |
Finding significant combinations of features in the presence of categorical covariates L Papaxanthos, F Llinares-López, D Bodenham, K Borgwardt Advances in neural information processing systems 29, 2016 | 39 | 2016 |
Deep embedding and alignment of protein sequences F Llinares-López, Q Berthet, M Blondel, O Teboul, JP Vert Nature Methods 20 (1), 104-111, 2023 | 34 | 2023 |
Direct language model alignment from online ai feedback S Guo, B Zhang, T Liu, T Liu, M Khalman, F Llinares, A Rame, T Mesnard, ... arXiv preprint arXiv:2402.04792, 2024 | 33 | 2024 |
Genome-wide genetic heterogeneity discovery with categorical covariates F Llinares-López, L Papaxanthos, D Bodenham, D Roqueiro, ... Bioinformatics 33 (12), 1820-1828, 2017 | 24 | 2017 |
Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma Y Liu, M Brossard, C Sarnowski, A Vaysse, M Moffatt, ... Scientific reports 7 (1), 938, 2017 | 20 | 2017 |
Deepconsensus: Gap-aware sequence transformers for sequence correction G Baid, DE Cook, K Shafin, T Yun, F Llinares-Lopez, Q Berthet, ... BioRxiv, 2021.08. 31.458403, 2021 | 15 | 2021 |
CASMAP: detection of statistically significant combinations of SNPs in association mapping F Llinares-López, L Papaxanthos, D Roqueiro, D Bodenham, K Borgwardt Bioinformatics 35 (15), 2680-2682, 2019 | 14 | 2019 |
Differentiable clustering with perturbed spanning forests L Stewart, F Bach, F Llinares-López, Q Berthet Advances in Neural Information Processing Systems 36, 2024 | 6 | 2024 |
Learning energy networks with generalized fenchel-young losses M Blondel, F Llinares-López, R Dadashi, L Hussenot, M Geist Advances in Neural Information Processing Systems 35, 12516-12528, 2022 | 6 | 2022 |
Machine learning for biomarker discovery: significant pattern mining F Llinares-Lopez, K Borgwardt Analyzing Network Data in Biology and Medicine: An Interdisciplinary …, 2019 | 6 | 2019 |
Efficient and modular implicit differentiation,(2021) M Blondel, Q Berthet, M Cuturi, R Frostig, S Hoyer, F Llinares-Lopez, ... arXiv preprint arXiv:2105.15183, 0 | 5 | |