Benchmark analysis of representative deep neural network architectures S Bianco, R Cadene, L Celona, P Napoletano IEEE access 6, 64270-64277, 2018 | 948 | 2018 |
Unimib shar: A dataset for human activity recognition using acceleration data from smartphones D Micucci, M Mobilio, P Napoletano Applied Sciences 7 (10), 1101, 2017 | 550 | 2017 |
On the use of deep learning for blind image quality assessment S Bianco, L Celona, P Napoletano, R Schettini Signal, Image and Video Processing 12, 355-362, 2018 | 375 | 2018 |
Anomaly detection in nanofibrous materials by CNN-based self-similarity P Napoletano, F Piccoli, R Schettini Sensors 18 (1), 209, 2018 | 304 | 2018 |
Food recognition: a new dataset, experiments, and results G Ciocca, P Napoletano, R Schettini IEEE journal of biomedical and health informatics 21 (3), 588-598, 2016 | 254 | 2016 |
On the personalization of classification models for human activity recognition A Ferrari, D Micucci, M Mobilio, P Napoletano IEEE Access 8, 32066-32079, 2020 | 149 | 2020 |
Visual descriptors for content-based retrieval of remote-sensing images P Napoletano International journal of remote sensing 39 (5), 1343-1376, 2018 | 146 | 2018 |
CNN-based features for retrieval and classification of food images G Ciocca, P Napoletano, R Schettini Computer Vision and Image Understanding 176, 70-77, 2018 | 143 | 2018 |
An interactive tool for manual, semi-automatic and automatic video annotation S Bianco, G Ciocca, P Napoletano, R Schettini Computer Vision and Image Understanding 131, 88-99, 2015 | 128 | 2015 |
Positive technology for elderly well-being: A review G Grossi, R Lanzarotti, P Napoletano, N Noceti, F Odone Pattern Recognition Letters 137, 61-70, 2020 | 107 | 2020 |
Trends in human activity recognition using smartphones A Ferrari, D Micucci, M Mobilio, P Napoletano Journal of Reliable Intelligent Environments 7 (3), 189-213, 2021 | 84 | 2021 |
Automated pruning for deep neural network compression F Manessi, A Rozza, S Bianco, P Napoletano, R Schettini 2018 24th International conference on pattern recognition (ICPR), 657-664, 2018 | 77 | 2018 |
Text classification using a few labeled examples F Colace, M De Santo, L Greco, P Napoletano Computers in Human Behavior 30, 689-697, 2014 | 75 | 2014 |
Evaluating color texture descriptors under large variations of controlled lighting conditions C Cusano, P Napoletano, R Schettini JOSA A 33 (1), 17-30, 2016 | 73 | 2016 |
Learning CNN-based features for retrieval of food images G Ciocca, P Napoletano, R Schettini New Trends in Image Analysis and Processing–ICIAP 2017: ICIAP International …, 2017 | 70 | 2017 |
Food recognition and leftover estimation for daily diet monitoring G Ciocca, P Napoletano, R Schettini New Trends in Image Analysis and Processing--ICIAP 2015 Workshops: ICIAP …, 2015 | 68 | 2015 |
Comparative evaluation of hand-crafted image descriptors vs. off-the-shelf CNN-based features for colour texture classification under ideal and realistic conditions R Bello-Cerezo, F Bianconi, F Di Maria, P Napoletano, F Smeraldi Applied Sciences 9 (4), 738, 2019 | 67 | 2019 |
Falls as anomalies? An experimental evaluation using smartphone accelerometer data D Micucci, M Mobilio, P Napoletano, F Tisato Journal of Ambient Intelligence and Humanized Computing 8 (1), 87-99, 2017 | 64 | 2017 |
Improved opponent color local binary patterns: an effective local image descriptor for color texture classification F Bianconi, R Bello-Cerezo, P Napoletano Journal of Electronic Imaging 27 (1), 011002-011002, 2018 | 58 | 2018 |
Combining local binary patterns and local color contrast for texture classification under varying illumination C Cusano, P Napoletano, R Schettini JOSA A 31 (7), 1453-1461, 2014 | 56 | 2014 |