关注
Kavosh Asadi
Kavosh Asadi
Research Scientist, Amazon
在 amazon.com 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Dive into deep learning
A Zhang, ZC Lipton, M Li, AJ Smola
arXiv preprint arXiv:2106.11342, 2021
10952021
Hybrid code networks: practical and efficient end-to-end dialog control with supervised and reinforcement learning
JD Williams, K Asadi, G Zweig
arXiv preprint arXiv:1702.03274, 2017
4062017
An Alternative Softmax Operator for Reinforcement Learning
K Asadi, ML Littman
Proceedings of the 34th International Conference on Machine Learning, 243-252, 2017
2242017
Lipschitz Continuity in Model-based Reinforcement Learning
K Asadi, D Misra, ML Littman
Proceedings of the 35th International Conference on Machine Learning, 2018
1682018
Deepmellow: removing the need for a target network in deep Q-learning
S Kim, K Asadi, M Littman, G Konidaris
Proceedings of the Twenty Eighth International Joint Conference on …, 2019
76*2019
State abstraction as compression in apprenticeship learning
D Abel, D Arumugam, K Asadi, Y Jinnai, ML Littman, LLS Wong
Proceedings of the AAAI Conference on Artificial Intelligence 33, 3134-3142, 2019
592019
Combating the Compounding-Error Problem with a Multi-step Model
K Asadi, D Misra, S Kim, ML Littman
arXiv preprint arXiv:1905.13320, 2019
572019
Lipschitz lifelong reinforcement learning
E Lecarpentier, D Abel, K Asadi, Y Jinnai, E Rachelson, ML Littman
Proceedings of the AAAI Conference on Artificial Intelligence 35 (9), 8270-8278, 2021
382021
Mean Actor Critic
K Asadi, C Allen, M Roderick, A Mohamed, G Konidaris, M Littman
arXiv preprint arXiv:1709.00503, 2017
36*2017
Continuous doubly constrained batch reinforcement learning
R Fakoor, J Mueller, K Asadi, P Chaudhari, AJ Smola
arXiv preprint arXiv:2102.09225, 2021
302021
Deep radial-basis value functions for continuous control
K Asadi, N Parikh, RE Parr, GD Konidaris, ML Littman
Proceedings of the AAAI Conference on Artificial Intelligence, 2021
27*2021
Sample-efficient Reinforcement Learning for Dialog Control
K Asadi, JD Williams
arXiv preprint arXiv:1612.06000, 2016
252016
Strengths, weaknesses, and combinations of model-based and model-free reinforcement learning
K Asadi
Department of Computing Science University of Alberta, 2015
142015
Mitigating Planner Overfitting in Model-Based Reinforcement Learning
D Arumugam, D Abel, K Asadi, N Gopalan, C Grimm, JK Lee, L Lehnert, ...
arXiv preprint arXiv:1812.01129, 2018
132018
Towards a Simple Approach to Multi-step Model-based Reinforcement Learning
K Asadi, E Cater, D Misra, ML Littman
arXiv preprint arXiv:1811.00128, 2018
132018
Equivalence between wasserstein and value-aware model-based reinforcement learning
K Asadi, E Cater, D Misra, ML Littman
FAIM Workshop on Prediction and Generative Modeling in Reinforcement Learning 3, 2018
13*2018
Resetting the optimizer in deep RL: An empirical study
K Asadi, R Fakoor, S Sabach
Advances in Neural Information Processing Systems 36, 2023
92023
Fair E3: Efficient welfare-centric fair reinforcement learning
C Cousins, K Asadi, ML Littman
5th Multidisciplinary Conference on Reinforcement Learning and Decision …, 2022
62022
Learning State Abstractions for Transfer in Continuous Control
K Asadi, D Abel, ML Littman
arXiv preprint arXiv:2002.05518, 2020
62020
TAIL: Task-specific Adapters for Imitation Learning with Large Pretrained Models
Z Liu, J Zhang, K Asadi, Y Liu, D Zhao, S Sabach, R Fakoor
arXiv preprint arXiv:2310.05905, 2023
52023
系统目前无法执行此操作,请稍后再试。
文章 1–20