Variable selection with error control: another look at stability selection RD Shah, RJ Samworth Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2013 | 383 | 2013 |
The Hardness of Conditional Independence Testing and the Generalised Covariance Measure. RD Shah, J Peters Annals of Statistics, 2020 | 320 | 2020 |
Diffuse large B-cell lymphoma classification system that associates normal B-cell subset phenotypes with prognosis K Dybkær, M Bøgsted, S Falgreen, JS Bødker, MK Kjeldsen, A Schmitz, ... Journal of Clinical Oncology 33 (12), 1379-1388, 2015 | 121 | 2015 |
Random Intersection Trees RD Shah, N Meinshausen Journal of Machine Learning Research, 2014 | 70 | 2014 |
Goodness‐of‐fit tests for high dimensional linear models RD Shah, P Bühlmann Journal of the Royal Statistical Society: Series B (Statistical Methodology …, 2018 | 56 | 2018 |
Goodness-of-fit testing in high dimensional generalized linear models J Janková, RD Shah, P Bühlmann, RJ Samworth Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2020 | 41 | 2020 |
The xyz algorithm for fast interaction search in high-dimensional data GA Thanei, N Meinshausen, RD Shah arXiv preprint arXiv:1610.05108, 2016 | 32 | 2016 |
Modelling interactions in high-dimensional data with backtracking RD Shah Journal of Machine Learning Research 17 (207), 1-31, 2016 | 32 | 2016 |
BETS: The dangers of selection bias in early analyses of the coronavirus disease (COVID-19) pandemic Q Zhao, N Ju, S Bacallado, RD Shah | 30 | 2021 |
Functional unknomics: Systematic screening of conserved genes of unknown function SM João J. Rocha, Satish Arcot Jayaram, Tim J. Stevens, Nadine Muschalik ... PLOS Biology 21 (8), 2023 | 23* | 2023 |
Modelling high-dimensional categorical data using nonconvex fusion penalties BG Stokell, RD Shah, RJ Tibshirani Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2021 | 20 | 2021 |
Right singular vector projection graphs: fast high dimensional covariance matrix estimation under latent confounding RD Shah, B Frot, GA Thanei, N Meinshausen Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2020 | 20* | 2020 |
Conditional independence testing in Hilbert spaces with applications to functional data analysis AR Lundborg, RD Shah, J Peters Journal of the Royal Statistical Society Series B: Statistical Methodology …, 2022 | 19 | 2022 |
Debiased inverse propensity score weighting for estimation of average treatment effects with high-dimensional confounders Y Wang, RD Shah arXiv preprint arXiv:2011.08661, 2020 | 16 | 2020 |
On -bit Min-wise Hashing for Large-scale Regression and Classification with Sparse Data RD Shah, N Meinshausen Journal of Machine Learning Research 18 (178), 1-42, 2018 | 12* | 2018 |
The Projected Covariance Measure for assumption-lean variable significance testing AR Lundborg, I Kim, RD Shah, RJ Samworth arXiv preprint arXiv:2211.02039, 2022 | 11 | 2022 |
Rank-transformed subsampling: inference for multiple data splitting and exchangeable p-values FR Guo, RD Shah arXiv preprint arXiv:2301.02739, 2023 | 10 | 2023 |
Structure learning for directed trees ME Jakobsen, RD Shah, P Bühlmann, J Peters Journal of Machine Learning Research 23 (159), 1-97, 2022 | 10 | 2022 |
Multicentre study of physical abuse and limb fractures in young children in the East Anglia Region, UK PD Mitchell, R Brown, T Wang, RD Shah, RJ Samworth, S Deakin, P Edge, ... Archives of disease in childhood 104 (10), 956-961, 2019 | 9 | 2019 |
Discussion of ‘Correlated variables in regression: clustering and sparse estimation’by Peter Bühlmann, Philipp Rütimann, Sara van de Geer and Cun-Hui Zhang RD Shah, RJ Samworth Journal of Statistical Planning and Inference 143 (11), 1866-1868, 2013 | 9 | 2013 |