Soft actor-critic algorithms and applications T Haarnoja, A Zhou, K Hartikainen, G Tucker, S Ha, J Tan, V Kumar, ... arXiv preprint arXiv:1812.05905, 2018 | 2721 | 2018 |
Offline reinforcement learning: Tutorial, review, and perspectives on open problems S Levine, A Kumar, G Tucker, J Fu arXiv preprint arXiv:2005.01643, 2020 | 1996* | 2020 |
Conservative q-learning for offline reinforcement learning A Kumar, A Zhou, G Tucker, S Levine NeurIPS 2020, 2020 | 1707 | 2020 |
Efficient Bayesian mixed-model analysis increases association power in large cohorts PR Loh, G Tucker, BK Bulik-Sullivan, BJ Vilhjálmsson, HK Finucane, ... Nature genetics 47 (3), 284-290, 2015 | 1581 | 2015 |
Gemini: a family of highly capable multimodal models G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ... arXiv preprint arXiv:2312.11805, 2023 | 1248 | 2023 |
Regularizing neural networks by penalizing confident output distributions G Pereyra, G Tucker, J Chorowski, Ł Kaiser, G Hinton ICLR 2017 Workshop, 2017 | 1242 | 2017 |
D4rl: Datasets for deep data-driven reinforcement learning J Fu, A Kumar, O Nachum, G Tucker, S Levine arXiv preprint arXiv:2004.07219, 2020 | 1046 | 2020 |
Stabilizing off-policy q-learning via bootstrapping error reduction A Kumar, J Fu, G Tucker, S Levine NeurIPS 2019, 2019 | 1035 | 2019 |
Model-based reinforcement learning for atari L Kaiser, M Babaeizadeh, P Milos, B Osinski, RH Campbell, ... ICLR 2020 Spotlight, 2020 | 950 | 2020 |
On variational bounds of mutual information B Poole, S Ozair, A Van Den Oord, A Alemi, G Tucker International Conference on Machine Learning, 5171-5180, 2019 | 882 | 2019 |
Behavior regularized offline reinforcement learning Y Wu, G Tucker, O Nachum arXiv preprint arXiv:1911.11361, 2019 | 715 | 2019 |
Widespread macromolecular interaction perturbations in human genetic disorders N Sahni, S Yi, M Taipale, JIF Bass, J Coulombe-Huntington, F Yang, ... Cell 161 (3), 647-660, 2015 | 576 | 2015 |
Learning to walk via deep reinforcement learning T Haarnoja, S Ha, A Zhou, J Tan, G Tucker, S Levine RSS 2019, 2019 | 526 | 2019 |
A quantitative chaperone interaction network reveals the architecture of cellular protein homeostasis pathways M Taipale, G Tucker, J Peng, I Krykbaeva, ZY Lin, B Larsen, H Choi, ... Cell 158 (2), 434-448, 2014 | 441 | 2014 |
Deep bayesian bandits showdown: An empirical comparison of bayesian deep networks for thompson sampling C Riquelme, G Tucker, J Snoek ICLR 2018, 2018 | 437* | 2018 |
Sample-efficient reinforcement learning with stochastic ensemble value expansion J Buckman, D Hafner, G Tucker, E Brevdo, H Lee NeurIPS 2018 Oral, 2018 | 384 | 2018 |
Rebar: Low-variance, unbiased gradient estimates for discrete latent variable models G Tucker, A Mnih, CJ Maddison, D Lawson, J Sohl-Dickstein NIPS 2017 Oral, 2017 | 348 | 2017 |
Gemma: Open models based on gemini research and technology G Team, T Mesnard, C Hardin, R Dadashi, S Bhupatiraju, S Pathak, ... arXiv preprint arXiv:2403.08295, 2024 | 338 | 2024 |
Don't blame the elbo! a linear vae perspective on posterior collapse J Lucas, G Tucker, RB Grosse, M Norouzi Advances in Neural Information Processing Systems 32, 2019 | 324* | 2019 |
Soft Co-Clustering of Data FW Elliott, R Rohwer, SC Jones, GJ Tucker, CJ Kain, CN Weidert US Patent App. 12/133,902, 2009 | 296 | 2009 |