关注
Patrick Schratz
Patrick Schratz
在 uni-jena.de 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Hyperparameter tuning and performance assessment of statistical and machine-learning algorithms using spatial data
P Schratz, J Muenchow, E Iturritxa, J Richter, A Brenning
Ecological Modelling 406, 109-120, 2019
454*2019
mlr3: A modern object-oriented machine learning framework in R
M Lang, M Binder, J Richter, P Schratz, F Pfisterer, S Coors, Q Au, ...
Journal of Open Source Software 4 (44), 1903, 2019
318*2019
Predicting forest cover in distinct ecosystems: The potential of multi-source Sentinel-1 and-2 data fusion
K Heckel, M Urban, P Schratz, MD Mahecha, C Schmullius
Remote Sensing 12 (2), 302, 2020
622020
The performance of landslide susceptibility models critically depends on the quality of digital elevation models
J Brock, P Schratz, H Petschko, J Muenchow, M Micu, A Brenning
Geomatics, Natural Hazards and Risk 11 (1), 1075-1092, 2020
502020
RQGIS: Integrating R with QGIS for Statistical Geocomputing.
J Muenchow, P Schratz, A Brenning
R Journal 9 (2), 2017
362017
parallelMap: Unified interface to parallelization back-ends
B Bischl, M Lang, P Schratz
R package version 1, 2015
322015
package’oddsratio’: Odds ratio calculation for GAM (M) s & GLM (M) s
PR Schratz
R Foundation for Statistical Computing: Vienna, Austria, 2017
30*2017
mlr3verse: Easily install and load the’mlr3’package family
M Lang, P Schratz
R package version 0.2 1, 2021
192021
FSelector: selecting attributes. R package Version 0.19
P Romanski, L Kotthoff, P Schratz
R Core Development Team, 2018
182018
Package ‘RSAGA’
A Brenning, D Bangs, M Becker, P Schratz, F Polakowski
The Comprehensive R Archive Network https://CRAN. R-project. org/package= RSAGA, 2018
172018
Woody cover mapping in the savanna ecosystem of the Kruger National Park using Sentinel-1 C-Band time series data
M Urban, K Heckel, C Berger, P Schratz, IPJ Smit, T Strydom, J Baade, ...
koedoe 62 (1), 1-6, 2020
162020
FSelectorRcpp:’Rcpp’implementation of’FSelector’entropy-based feature selection algorithms with a sparse matrix support
Z Zawadzki, M Kosinski, K Slomczynski, D Skrzypiec, P Schratz
R package version 0.3 8, 2021
152021
mlr: Machine Learning in R., 2013
B Bischl, M Lang, L Kotthoff, J Schiffner, J Richter, Z Jones, G Casalicchio, ...
URL https://CRAN. R-project. org/package= mlr. R package version 2, 455, 0
14
mlr3 book
M Becker, M Binder, B Bischl, N Foss, L Kotthoff, M Lan, F Pfisterer, ...
URl: https://mlr3book. mlr-org. com 28, 29-30, 2021
132021
Mlr3spatiotempcv: Spatiotemporal resampling methods for machine learning in R
P Schratz, M Becker, M Lang, A Brenning
arXiv preprint arXiv:2110.12674, 2021
102021
Iml: Interpretable machine learning
C Molnar, P Schratz
R package version 0.5 1, 2018
102018
Monitoring forest health using hyperspectral imagery: Does feature selection improve the performance of machine-learning techniques?
P Schratz, J Muenchow, E Iturritxa, J Cortés, B Bischl, A Brenning
Remote Sensing 13 (23), 4832, 2021
92021
mlr3spatiotempcv: Spatiotemporal resampling methods for “mlr3”
P Schratz, M Becker
R Package, 2021
92021
mlr3: Machine learning in R—Next generation
M Lang, B Bischl, J Richter, P Schratz, G Casalicchio, S Coors, Q Au, ...
72020
Machine learning in R
B Bischl, M Lang, L Kotthoff, J Schiffner, J Richter, Z Jones, G Casalicchio, ...
R-Package, TU Dortmund, URL http://r-forge. rproject. org/projects/mlr, 2010
62010
系统目前无法执行此操作,请稍后再试。
文章 1–20