Potassco: The Potsdam answer set solving collection M Gebser, B Kaufmann, R Kaminski, M Ostrowski, T Schaub, M Schneider AI Communications 24 (2), 107-124, 2011 | 621 | 2011 |
Auto-sklearn 2.0: Hands-free automl via meta-learning M Feurer, K Eggensperger, S Falkner, M Lindauer, F Hutter Journal of Machine Learning Research (JMLR), 2022 | 393* | 2022 |
Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges B Bischl, M Binder, M Lang, T Pielok, J Richter, S Coors, J Thomas, ... Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 13 (2 …, 2023 | 331 | 2023 |
SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization. M Lindauer, K Eggensperger, M Feurer, A Biedenkapp, D Deng, ... J. Mach. Learn. Res. 23, 54:1-54:9, 2022 | 285 | 2022 |
Aslib: A benchmark library for algorithm selection B Bischl, P Kerschke, L Kotthoff, M Lindauer, Y Malitsky, A Fréchette, ... Artificial Intelligence 237, 41-58, 2016 | 276 | 2016 |
Auto-Pytorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL. L Zimmer, M Lindauer, F Hutter IEEE Transactions on Pattern Analysis and Machine Intelligence 43 (9), 3079 …, 2021 | 232 | 2021 |
Well-tuned Simple Nets Excel on Tabular Datasets A Kadra, M Lindauer, F Hutter, J Grabocka Advances in Neural Information Processing Systems 34, 2021 | 206* | 2021 |
AutoFolio: an automatically configured algorithm selector M Lindauer, HH Hoos, F Hutter, T Schaub Journal of Artificial Intelligence Research 53, 745-778, 2015 | 162 | 2015 |
Best practices for scientific research on neural architecture search M Lindauer, F Hutter Journal of Machine Learning Research 21 (243), 1-18, 2020 | 147 | 2020 |
Practical automated machine learning for the automl challenge 2018 M Feurer, K Eggensperger, S Falkner, M Lindauer, F Hutter International Workshop on Automatic Machine Learning at ICML, 1189-1232, 2018 | 108 | 2018 |
A portfolio solver for answer set programming: Preliminary report M Gebser, R Kaminski, B Kaufmann, T Schaub, MT Schneider, S Ziller International Conference on Logic Programming and Nonmonotonic Reasoning …, 2011 | 103 | 2011 |
claspfolio 2: Advances in Algorithm Selection for Answer Set Programming H Hoos, M Lindauer, T Schaub Theory and Practice of Logic Programming 14 (Special Issue 4-5), 569--585, 2014 | 99 | 2014 |
AClib: A benchmark library for algorithm configuration F Hutter, M López-Ibánez, C Fawcett, M Lindauer, HH Hoos, ... International Conference on Learning and Intelligent Optimization, 36-40, 2014 | 96 | 2014 |
Potassco User Guide M Gebser, R Kaminski, B Kaufmann, M Lindauer, M Ostrowski, J Romero, ... Institute for Informatics, University of Potsdam, second edition edition, 2015 | 90 | 2015 |
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO K Eggensperger, P Müller, N Mallik, M Feurer, R Sass, A Klein, N Awad, ... NeurIPS Track Datasets and Benchmarks, 2021 | 84 | 2021 |
A case study of algorithm selection for the traveling thief problem M Wagner, M Lindauer, M Mısır, S Nallaperuma, F Hutter Journal of Heuristics, 1-26, 2017 | 80 | 2017 |
Warmstarting of model-based algorithm configuration M Lindauer, F Hutter Thirty-Second AAAI Conference on Artificial Intelligence, 2018 | 78 | 2018 |
Automated reinforcement learning (autorl): A survey and open problems J Parker-Holder, R Rajan, X Song, A Biedenkapp, Y Miao, T Eimer, ... Journal of Artificial Intelligence Research 74, 517-568, 2022 | 77 | 2022 |
The configurable SAT solver challenge (CSSC) F Hutter, M Lindauer, A Balint, S Bayless, H Hoos, K Leyton-Brown Artificial Intelligence 243, 1-25, 2017 | 77 | 2017 |
Dynamic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework A Biedenkapp, HF Bozkurt, T Eimer, F Hutter, M Lindauer European Conference on AI (ECAI), 2020 | 71 | 2020 |