Gemini: a family of highly capable multimodal models G Team, R Anil, S Borgeaud, Y Wu, JB Alayrac, J Yu, R Soricut, ... arXiv preprint arXiv:2312.11805, 2023 | 1300 | 2023 |
Underspecification presents challenges for credibility in modern machine learning A D'Amour, K Heller, D Moldovan, B Adlam, B Alipanahi, A Beutel, ... Journal of Machine Learning Research 23 (226), 1-61, 2022 | 742 | 2022 |
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context M Reid, N Savinov, D Teplyashin, D Lepikhin, T Lillicrap, J Alayrac, ... arXiv preprint arXiv:2403.05530, 2024 | 272 | 2024 |
Healthsheet: development of a transparency artifact for health datasets N Rostamzadeh, D Mincu, S Roy, A Smart, L Wilcox, M Pushkarna, ... Proceedings of the 2022 ACM Conference on Fairness, Accountability, and …, 2022 | 51 | 2022 |
Diagnosing failures of fairness transfer across distribution shift in real-world medical settings J Schrouff, N Harris, S Koyejo, IM Alabdulmohsin, E Schnider, ... Advances in Neural Information Processing Systems 35, 19304-19318, 2022 | 43 | 2022 |
Maintaining fairness across distribution shift: do we have viable solutions for real-world applications J Schrouff, N Harris, O Koyejo, I Alabdulmohsin, E Schnider, ... arXiv preprint arXiv:2202.01034, 2022 | 41 | 2022 |
Best of both worlds: local and global explanations with human-understandable concepts J Schrouff, S Baur, S Hou, D Mincu, E Loreaux, R Blanes, J Wexler, ... arXiv preprint arXiv:2106.08641, 2021 | 30 | 2021 |
Concept-based model explanations for electronic health records D Mincu, E Loreaux, S Hou, S Baur, I Protsyuk, M Seneviratne, A Mottram, ... Proceedings of the Conference on Health, Inference, and Learning, 36-46, 2021 | 27 | 2021 |
Developing robust benchmarks for driving forward AI innovation in healthcare D Mincu, S Roy Nature Machine Intelligence, 2022 | 25 | 2022 |
Batch calibration: Rethinking calibration for in-context learning and prompt engineering H Zhou, X Wan, L Proleev, D Mincu, J Chen, K Heller, S Roy arXiv preprint arXiv:2309.17249, 2023 | 21 | 2023 |
Multitask prediction of organ dysfunction in the intensive care unit using sequential subnetwork routing S Roy, D Mincu, E Loreaux, A Mottram, I Protsyuk, N Harris, Y Xue, ... Journal of the American Medical Informatics Association 28 (9), 1936-1946, 2021 | 17 | 2021 |
Underspecification presents challenges for credibility in modern machine learning. arXiv A D’Amour, K Heller, D Moldovan, B Adlam, B Alipanahi, A Beutel, ... arXiv preprint arXiv:2011.03395, 2020 | 11 | 2020 |
Disability prediction in multiple sclerosis using performance outcome measures and demographic data S Roy, D Mincu, L Proleev, N Rostamzadeh, C Ghate, N Harris, C Chen, ... Conference on Health, Inference, and Learning, 375-396, 2022 | 6 | 2022 |
Anniversary AI reflections N Ferruz, M Zitnik, PY Oudeyer, E Hine, N Sengupta, Y Shi, D Mincu, ... Nature Machine Intelligence 6 (1), 6-12, 2024 | 5 | 2024 |
Benchmarking continuous time models for predicting multiple sclerosis progression A Norcliffe, L Proleev, D Mincu, FL Hartsell, K Heller, S Roy arXiv preprint arXiv:2302.07854, 2023 | 2 | 2023 |
STUDY: Socially Aware Temporally Casual Decoder Recommender Systems E Ahmed, D Mincu, L Harrell, K Heller, S Roy arXiv preprint arXiv:2306.07946, 2023 | | 2023 |
Performance of Machine Learning Models for Predicting High-Severity Symptoms in Multiple Sclerosis S Roy, D Mincu, L Proleev, C Ghate, J Graves, D Steiner, F Hartsell, ... | | 2023 |
Longitudinal Modeling of Multiple Sclerosis using Continuous Time Models. A Norcliffe, L Proleev, D Mincu, FL Hartsell, KA Heller, S Roy CoRR, 2023 | | 2023 |
Concept-based model explanations for Electronic Health Records S Baur, S Hou, E Loreaux, D Mincu, A Mottram, I Protsyuk, N Tomasev, ... arXiv e-prints, arXiv: 2012.02308, 2020 | | 2020 |
Diagnosing failures of fairness transfer across distribution shift in real-world medical settings: Supplement J Schrouff, N Harris, O Koyejo, I Alabdulmohsin, E Schnider, ... | | |