关注
Junpei Komiyama
Junpei Komiyama
New York University
在 komiyama.info 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Optimal regret analysis of thompson sampling in stochastic multi-armed bandit problem with multiple plays
J Komiyama, J Honda, H Nakagawa
International Conference on Machine Learning, 1152-1161, 2015
1842015
Nonconvex optimization for regression with fairness constraints
J Komiyama, A Takeda, J Honda, H Shimao
International conference on machine learning, 2737-2746, 2018
1252018
Regret lower bound and optimal algorithm in dueling bandit problem
J Komiyama, J Honda, H Kashima, H Nakagawa
Conference on learning theory, 1141-1154, 2015
982015
Copeland dueling bandit problem: Regret lower bound, optimal algorithm, and computationally efficient algorithm
J Komiyama, J Honda, H Nakagawa
International Conference on Machine Learning, 1235-1244, 2016
432016
Regret lower bound and optimal algorithm in finite stochastic partial monitoring
J Komiyama, J Honda, H Nakagawa
Advances in Neural Information Processing Systems 28, 2015
322015
Scaling multi-armed bandit algorithms
E Fouché, J Komiyama, K Böhm
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge …, 2019
312019
Position-based multiple-play bandit problem with unknown position bias
J Komiyama, J Honda, A Takeda
Advances in Neural Information Processing Systems 30, 2017
292017
Statistical emerging pattern mining with multiple testing correction
J Komiyama, M Ishihata, H Arimura, T Nishibayashi, S Minato
Proceedings of the 23rd ACM SIGKDD international conference on knowledge …, 2017
272017
Ric-nn: A robust transferable deep learning framework for cross-sectional investment strategy
K Nakagawa, M Abe, J Komiyama
2020 IEEE 7th International Conference on Data Science and Advanced …, 2020
222020
Two-stage algorithm for fairness-aware machine learning
J Komiyama, H Shimao
arXiv preprint arXiv:1710.04924, 2017
222017
Minimax Optimal Algorithms for Fixed-Budged Best Arm Identification
J Komiyama, T Tsuchiya, J Honda
arXiv preprint arXiv:2206.04646, 2022
182022
Multi-armed bandit problem with lock-up periods
J Komiyama, I Sato, H Nakagawa
Asian Conference on Machine Learning, 100-115, 2013
182013
Policy choice and best arm identification: Asymptotic analysis of exploration sampling
K Ariu, M Kato, J Komiyama, K McAlinn, C Qin
arXiv preprint arXiv:2109.08229, 2021
142021
Time-decaying bandits for non-stationary systems
J Komiyama, T Qin
Web and Internet Economics: 10th International Conference, WINE 2014 …, 2014
132014
KL-UCB-based policy for budgeted multi-armed bandits with stochastic action costs
R Watanabe, J Komiyama, A Nakamura, M Kudo
IEICE Transactions on Fundamentals of Electronics, Communications and …, 2017
122017
Anytime capacity expansion in medical residency match by monte carlo tree search
K Abe, J Komiyama, A Iwasaki
arXiv preprint arXiv:2202.06570, 2022
102022
Optimal simple regret in bayesian best arm identification
J Komiyama, K Ariu, M Kato, C Qin
arXiv preprint arXiv:2111.09885, 2021
82021
On Statistical Discrimination as a Failure of Social Learning: A Multiarmed Bandit Approach
J Komiyama, S Noda
Management Science, 2024
72024
Rate-Optimal Bayesian Simple Regret in Best Arm Identification
J Komiyama, K Ariu, M Kato, C Qin
Mathematics of Operations Research, 2023
52023
Posterior tracking algorithm for classification bandits
K Tabata, J Komiyama, A Nakamura, T Komatsuzaki
International Conference on Artificial Intelligence and Statistics, 10994-11022, 2023
42023
系统目前无法执行此操作,请稍后再试。
文章 1–20