关注
Taylor Runyan Lee
Taylor Runyan Lee
在 nrlssc.navy.mil 的电子邮件经过验证
标题
引用次数
引用次数
年份
A machine learning (kNN) approach to predicting global seafloor total organic carbon
TR Lee, WT Wood, BJ Phrampus
Global Biogeochemical Cycles 33 (1), 37-46, 2019
1202019
A global probabilistic prediction of cold seeps and associated SEAfloor FLuid Expulsion Anomalies (SEAFLEAs)
BJ Phrampus, TR Lee, WT Wood
Geochemistry, Geophysics, Geosystems 21 (1), e2019GC008747, 2020
202020
Global marine isochore estimates using machine learning
TR Lee, BJ Phrampus, J Obelcz, WT Wood, A Skarke
Geophysical Research Letters 47 (18), e2020GL088726, 2020
102020
Machine learning augmented time‐lapse bathymetric surveys: A case study from the Mississippi river delta front
J Obelcz, WT Wood, BJ Phrampus, TR Lee
Geophysical Research Letters 47 (10), e2020GL087857, 2020
72020
Predictor Grids for “A Global Probabilistic Prediction of Cold Seeps and Associated Seafloor Fluid Expulsion Anomalies (SEAFLEAs)”
BJ Phrampus, TR Lee, WT Wood
Type: dataset, 2020
62020
Practical quantification of uncertainty in seabed property prediction using geospatial KNN machine learning
W Wood, T Lee, J Obelcz
EGU General Assembly Conference Abstracts, 9760, 2018
62018
Global estimates of biogenic methane production in marine sediments using machine learning and deterministic modeling
TR Lee, BJ Phrampus, A Skarke, WT Wood
Global Biogeochemical Cycles 36 (7), e2021GB007248, 2022
52022
Forecasting marine sediment properties with geospatial machine learning
JM Frederick, WK Eymold, MA Nole, BJ Phrampus, TR Lee, WT Wood, ...
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2021
32021
The necessary optimization of the data lifecycle: Marine geosciences in the big data era
TR Lee, BJ Phrampus, J Obelcz
Frontiers in Earth Science 10, 1089112, 2023
12023
Nowcasting submarine slope instability at local, margin, and global scales using machine learning
J Obelcz, WT Wood, BJ Phrampus, TR Lee
EarthArXiv, 2019
12019
Development of a global predictive seabed model (GPSM)
WT Wood, BJ Phrampus, TR Lee, J Obelcz
AGU Fall Meeting Abstracts 2018, T31E-0369, 2018
12018
Global Seafloor Prediction of Total Organic Carbon, Total Inorganic Carbon, and Mass Accumulation Rate Using Geospatial Machine Learning
JY Peter, WT Wood, TR Lee, MAL Walton, J Graw, M Uwaifo
AGU23, 2024
2024
Machine learning inputs to estimate Arctic marine sediments methane inventories for modern and last glacial maximum conditions
TR Lee, BJ Phrampus, WT Wood
AGU23, 2023
2023
Empirically determined global marine shear strength estimates via machine learning and sediment physics models
TR Lee, J Obelcz, WT Wood
AGU23, 2023
2023
Preliminary Results using a Physics-Informed Neural Network (PINN) to predict sub-surface sediment properties
BJ Phrampus, TR Lee, J Graw, WT Wood
AGU23, 2023
2023
Characterizing the heterogeneity of gas and gas hydrate accumulations in natural marine sediment.
WT Wood, BJ Phrampus, TR Lee
AGU23, 2023
2023
Correlating Satellite Derived Ocean Color with Benthic Sedimentation
GA Restreppo, JH Graw, BJ Phrampus, TR Lee, WT Wood
Fall Meeting 2022, 2022
2022
A Data Driven Approach to Quantifying Fraction Clay Mineralogy from Grain Size and Clay Species Analysis
TA Hill, J Obelcz, T Vander, TR Lee
AGU Fall Meeting Abstracts 2022, EP11A-01, 2022
2022
Biogenic methane production and gas hydrate distribution during the Last Glacial Maximum: estimates utilizing machine learning and model-based inputs
BJ Phrampus, TR Lee, WT Wood
AGU Fall Meeting Abstracts 2022, OS12C-0761, 2022
2022
New Constraints on Gas and Gas Hydrate Concentration Estimates on the Cascadia Margin from Long-Offset Multichannel Seismic Data.
WT Wood, BJ Phrampus, TR Lee, A Douglass, S Abadi
AGU Fall Meeting Abstracts 2022, OS12C-0762, 2022
2022
系统目前无法执行此操作,请稍后再试。
文章 1–20