Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations M Sammartino, R Caflisch Communications in Mathematical Physics 192 (2), 433-461, 1998 | 463 | 1998 |
Zero Viscosity Limit for Analytic Solutions of the Navier-Stokes Equation on a Half-Space.¶ II. Construction of the Navier-Stokes Solution M Sammartino, RE Caflisch Communications in mathematical physics 192 (2), 463-491, 1998 | 347 | 1998 |
Well-posedness of the boundary layer equations MC Lombardo, M Cannone, M Sammartino SIAM journal on mathematical analysis 35 (4), 987-1004, 2003 | 170 | 2003 |
Pattern formation driven by cross-diffusion in a 2D domain G Gambino, MC Lombardo, M Sammartino Nonlinear Analysis: Real World Applications 14 (3), 1755-1779, 2013 | 129 | 2013 |
A thermodynamical approach to Eddington factors AM Anile, S Pennisi, M Sammartino Journal of mathematical physics 32 (2), 544-550, 1991 | 124 | 1991 |
Turing pattern formation in the Brusselator system with nonlinear diffusion G Gambino, MC Lombardo, M Sammartino, V Sciacca Physical Review E—Statistical, Nonlinear, and Soft Matter Physics 88 (4 …, 2013 | 117 | 2013 |
Turing instability and traveling fronts for a nonlinear reaction–diffusion system with cross-diffusion G Gambino, MC Lombardo, M Sammartino Mathematics and Computers in Simulation 82 (6), 1112-1132, 2012 | 114 | 2012 |
A shallow water model with eddy viscosity for basins with varying bottom topography CD Levermore, M Sammartino Nonlinearity 14 (6), 1493, 2001 | 74 | 2001 |
Existence and singularities for the Prandtl boundary layer equations RE Caflisch, M Sammartino ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte …, 2000 | 68 | 2000 |
Demyelination patterns in a mathematical model of multiple sclerosis MC Lombardo, R Barresi, E Bilotta, F Gargano, P Pantano, M Sammartino Journal of mathematical biology 75, 373-417, 2017 | 59 | 2017 |
Singularity formation for Prandtl’s equations F Gargano, M Sammartino, V Sciacca Physica D: Nonlinear Phenomena 238 (19), 1975-1991, 2009 | 58* | 2009 |
A velocity–diffusion method for a Lotka–Volterra system with nonlinear cross and self-diffusion G Gambino, MC Lombardo, M Sammartino Applied Numerical Mathematics 59 (5), 1059-1074, 2009 | 55 | 2009 |
Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth B Bozzini, G Gambino, D Lacitignola, S Lupo, M Sammartino, I Sgura Computers & Mathematics with Applications 70 (8), 1948-1969, 2015 | 52 | 2015 |
Cross-diffusion driven instability in a predator-prey system with cross-diffusion E Tulumello, MC Lombardo, M Sammartino Acta Applicandae Mathematicae 132 (1), 621-633, 2014 | 47 | 2014 |
Turing instability and pattern formation for the Lengyel–Epstein system with nonlinear diffusion G Gambino, MC Lombardo, M Sammartino Acta Applicandae Mathematicae 132, 283-294, 2014 | 46 | 2014 |
Singularity tracking for Camassa–Holm and Prandtl's equations G Della Rocca, MC Lombardo, M Sammartino, V Sciacca Applied numerical mathematics 56 (8), 1108-1122, 2006 | 44 | 2006 |
Covariant radiation hydrodynamics AM Anile, S Pennisi, M Sammartino Annales de l'IHP Physique théorique 56 (1), 49-74, 1992 | 44 | 1992 |
Analysis of complex singularities in high-Reynolds-number Navier–Stokes solutions F Gargano, M Sammartino, V Sciacca, KW Cassel Journal of fluid mechanics 747, 381-421, 2014 | 36 | 2014 |
Well-posedness of Prandtl equations with non-compatible data M Cannone, MC Lombardo, M Sammartino Nonlinearity 26 (12), 3077, 2013 | 36 | 2013 |
Pattern selection in the 2D FitzHugh–Nagumo model G Gambino, MC Lombardo, G Rubino, M Sammartino Ricerche di Matematica 68, 535-549, 2019 | 35 | 2019 |