关注
Matthew Ruffalo
Matthew Ruffalo
Systems Scientist, Carnegie Mellon University
在 cs.cmu.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Dynamics of clonal evolution in myelodysplastic syndromes
H Makishima, T Yoshizato, K Yoshida, MA Sekeres, T Radivoyevitch, ...
Nature genetics 49 (2), 204, 2017
4322017
The human body at cellular resolution: the NIH Human Biomolecular Atlas Program
S Lin, A Posgai, M Atkinson, A Regev, J Rood, O Rozenblatt-Rosen, ...
Nature Publishing Group UK, 2019
388*2019
Comparative analysis of algorithms for next-generation sequencing read alignment
M Ruffalo, T LaFramboise, M Koyutürk
Bioinformatics 27 (20), 2790-2796, 2011
3562011
Network-based integration of disparate omic data to identify" silent players" in cancer
M Ruffalo, M Koyutürk, R Sharan
PLoS computational biology 11 (12), e1004595, 2015
722015
A web server for comparative analysis of single-cell RNA-seq data
A Alavi, M Ruffalo, A Parvangada, Z Huang, Z Bar-Joseph
Nature communications 9 (1), 4768, 2018
512018
Accurate estimation of short read mapping quality for next-generation genome sequencing
M Ruffalo, M Koyutürk, S Ray, T LaFramboise
Bioinformatics 28 (18), i349-i355, 2012
482012
Protein interaction disruption in cancer
M Ruffalo, Z Bar-Joseph
BMC cancer 19 (1), 370, 2019
142019
Genome wide predictions of miRNA regulation by transcription factors
M Ruffalo, Z Bar-Joseph
Bioinformatics 32 (17), i746-i754, 2016
132016
Whole-exome sequencing enhances prognostic classification of myeloid malignancies
M Ruffalo, H Husseinzadeh, H Makishima, B Przychodzen, M Ashkar, ...
Journal of biomedical informatics 58, 104-113, 2015
122015
Construction of integrated microRNA and mRNA immune cell signatures to predict survival of patients with breast and ovarian cancer
M Ray, MM Ruffalo, Z Bar‐Joseph
Genes, Chromosomes and Cancer 58 (1), 34-42, 2019
102019
Reconstructing cancer drug response networks using multitask learning
M Ruffalo, P Stojanov, VK Pillutla, R Varma, Z Bar-Joseph
BMC systems biology 11 (1), 96, 2017
102017
CINS: Cell Interaction Network inference from Single cell expression data
Y Yuan, C Cosme, TS Adams, J Schupp, K Sakamoto, N Xylourgidis, ...
bioRxiv, 2021
72021
Network-guided prediction of aromatase inhibitor response in breast cancer
M Ruffalo, R Thomas, J Chen, AV Lee, S Oesterreich, Z Bar-Joseph
PLoS computational biology 15 (2), e1006730, 2019
72019
Using single cell atlas data to reconstruct regulatory networks
Q Song, M Ruffalo, Z Bar-Joseph
Nucleic Acids Research, gkad053, 2023
52023
A Unified Pipeline for FISH Spatial Transcriptomics
C Cisar, N Keener, M Ruffalo, B Paten
bioRxiv, 2023.02. 17.529010, 2023
52023
In analogy to AML, MDS can be sub-classified by ancestral mutations
H Makishima, K Yoshida, T LaFramboise, BP Przychodzen, M Ruffalo, ...
Blood 124 (21), 823-823, 2014
52014
Clinical “MUTATOME” Of Myelodysplastic Syndrome; Comparison To Primary Acute Myelogenous Leukemia
T LaFramboise, BP Przychodzen, K Yoshida, M Ruffalo, I Gómez-Seguí, ...
Blood 122 (21), 518-518, 2013
52013
Serial sequencing in myelodysplastic syndromes reveals dynamic changes in clonal architecture and allows for a new prognostic assessment of mutations detected in cross …
H Makishima, K Yoshida, T LaFramboise, T Yoshizato, M Ruffalo, ...
Blood 126 (23), 709-709, 2015
32015
A unified analysis of atlas single cell data
H Chen, ND Nguyen, M Ruffalo, Z Bar-Joseph
bioRxiv, 2022.08. 06.503038, 2022
22022
Whole exome sequencing to predict response to hypomethylating agents in MDS
HD Husseinzadeh, EP Evans, K Yoshida, H Makishima, A Jerez, ...
Blood 120 (21), 1698-1698, 2012
22012
系统目前无法执行此操作,请稍后再试。
文章 1–20