Partial differential equations with variable exponents: variational methods and qualitative analysis VD Radulescu, DD Repovs CRC press, 2015 | 671 | 2015 |
Nonlinear analysis-theory and methods NS Papageorgiou, VD Rădulescu, DD Repovš Springer, 2019 | 507 | 2019 |
Continuous selections of multivalued mappings D Repovš, PV Semenov Recent progress in general topology III, 711-749, 2013 | 297 | 2013 |
Double phase transonic flow problems with variable growth: nonlinear patterns and stationary waves A Bahrouni, VD Rădulescu, DD Repovš Nonlinearity 32 (7), 2481, 2019 | 146 | 2019 |
Combined effects in nonlinear problems arising in the study of anisotropic continuous media V Rădulescu, D Repovš Nonlinear Analysis: Theory, Methods & Applications 75 (3), 1524-1530, 2012 | 120 | 2012 |
Double phase problems with variable growth M Cencelj, VD Rădulescu, DD Repovš Nonlinear Analysis 177, 270-287, 2018 | 118 | 2018 |
Double-phase problems and a discontinuity property of the spectrum N Papageorgiou, V Rădulescu, D Repovš Proceedings of the American Mathematical Society 147 (7), 2899-2910, 2019 | 103 | 2019 |
Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials X Zhang, B Zhang, D Repovš Nonlinear Analysis 142, 48-68, 2016 | 98 | 2016 |
Stationary waves of Schrödinger-type equations with variable exponent D Repovš Analysis and Applications 13 (06), 645-661, 2015 | 98 | 2015 |
Double-phase problems with reaction of arbitrary growth NS Papageorgiou, VD Rădulescu, DD Repovš Zeitschrift für angewandte Mathematik und Physik 69, 1-21, 2018 | 91 | 2018 |
Positive solutions for perturbations of the Robin eigenvalue problem plus an indefinite potential NS Papageorgiou, VD Rădulescu, DD Repovš arXiv preprint arXiv:1702.06759, 2017 | 84 | 2017 |
Nonlinear nonhomogeneous singular problems NS Papageorgiou, VD Rădulescu, DD Repovš Calculus of Variations and Partial Differential Equations 59 (1), 9, 2020 | 75 | 2020 |
On a non-homogeneous eigenvalue problem involving a potential: an Orlicz–Sobolev space setting M Mihăilescu, V Rădulescu, D Repovš Journal de mathématiques pures et appliquées 93 (2), 132-148, 2010 | 75 | 2010 |
On doubly nonlocal fractional elliptic equations GM Bisci, DD Repovš Rendiconti Lincei 26 (2), 161-176, 2015 | 69 | 2015 |
Higher nonlocal problems with bounded potential GM Bisci, D Repovš Journal of Mathematical Analysis and Applications 420 (1), 167-176, 2014 | 69 | 2014 |
Multiple solutions of double phase variational problems with variable exponent X Shi, VD Rădulescu, DD Repovš, Q Zhang Advances in Calculus of Variations 13 (4), 385-401, 2020 | 63 | 2020 |
Existence and multiplicity of solutions for double‐phase Robin problems NS Papageorgiou, VD Rădulescu, DD Repovš Bulletin of the London Mathematical Society 52 (3), 546-560, 2020 | 63 | 2020 |
Multiple solutions for a nonlinear and non-homogeneous problem in Orlicz–Sobolev spaces M Mihăilescu, D Repovš Applied Mathematics and Computation 217 (14), 6624-6632, 2011 | 62 | 2011 |
On semilocally simply connected spaces H Fischer, D Repovš, Ž Virk, A Zastrow Topology and its Applications 158 (3), 397-408, 2011 | 62 | 2011 |
Existence and multiplicity results for a new p (x)-Kirchhoff problem MK Hamdani, A Harrabi, F Mtiri, DD Repovš Nonlinear Analysis 190, 111598, 2020 | 61 | 2020 |