Global regularity for the 2D Boussinesq equations with partial viscosity terms D Chae Advances in Mathematics 203 (2), 497-513, 2006 | 520 | 2006 |
Well-posedness for Hall-magnetohydrodynamics D Chae, P Degond, JG Liu Annales de l'IHP Analyse non linéaire 31 (3), 555-565, 2014 | 242 | 2014 |
Local existence and blow-up criterion for the Boussinesq equations D Chae, HS Nam Proceedings of the Royal Society of Edinburgh Section A: Mathematics 127 (5 …, 1997 | 220 | 1997 |
The existence of non-topological multivortex solutions in the relativistic self-dual Chern–Simons theory D Chae, OY Imanuvilov Communications in Mathematical Physics 215, 119-142, 2000 | 200 | 2000 |
On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics D Chae, J Lee Journal of Differential Equations 256 (11), 3835-3858, 2014 | 197 | 2014 |
Generalized surface quasi‐geostrophic equations with singular velocities D Chae, P Constantin, D Córdoba, F Gancedo, J Wu Communications on Pure and Applied Mathematics 65 (8), 1037-1066, 2012 | 188 | 2012 |
Global well-posedness in the super-critical dissipative quasi-geostrophic equations D Chae, J Lee Communications in mathematical physics 233, 297-311, 2003 | 178 | 2003 |
On the temporal decay for the Hall-magnetohydrodynamic equations D Chae, M Schonbek Journal of Differential Equations 255 (11), 3971-3982, 2013 | 174 | 2013 |
On the regularity of the axisymmetric solutions of the Navier-Stokes equations D Chae, J Lee Mathematische Zeitschrift 239, 645-671, 2002 | 147 | 2002 |
Regularity of solutions to the Navier-Stokes equation D Chae, HJ Choe Southwest Texas State University, Department of Mathematics, 1999 | 145 | 1999 |
Local existence and blow‐up criterion for the Euler equations in the Besov spaces D Chae Asymptotic Analysis 38 (3-4), 339-358, 2004 | 136 | 2004 |
Local existence and blow-up criterion of Hölder continuous solutions of the Boussinesq equations D Chae, SK Kim, HS Nam Nagoya Mathematical Journal 155, 55-80, 1999 | 131 | 1999 |
On the well‐posedness of the Euler equations in the Triebel‐Lizorkin spaces D Chae Communications on Pure and Applied Mathematics: A Journal Issued by the …, 2002 | 128 | 2002 |
Inviscid models generalizing the two-dimensional Euler and the surface quasi-geostrophic equations D Chae, P Constantin, J Wu Archive for rational mechanics and analysis 202 (1), 35-62, 2011 | 123 | 2011 |
Local well-posedness for the Hall-MHD equations with fractional magnetic diffusion D Chae, R Wan, J Wu Journal of Mathematical Fluid Mechanics 17, 627-638, 2015 | 116 | 2015 |
Finite time singularities in a 1D model of the quasi-geostrophic equation D Chae, A Córdoba, D Córdoba, MA Fontelos Advances in Mathematics 194 (1), 203-223, 2005 | 113 | 2005 |
Singularity formation for the incompressible Hall-MHD equations without resistivity D Chae, S Weng Annales de l'Institut Henri Poincaré C, Analyse non linéaire 33 (4), 1009-1022, 2016 | 104 | 2016 |
Regularity criterion in terms of pressure for the Navier–Stokes equations D Chae, J Lee Nonlinear Analysis: Theory, Methods & Applications 46 (5), 727-735, 2001 | 101 | 2001 |
Liouville-type theorems for the forced Euler equations and the Navier–Stokes equations D Chae Communications in Mathematical Physics 326, 37-48, 2014 | 99 | 2014 |
Exact controllability for semilinear parabolic equations with Neumann boundary conditions D Chae, OY Imanuvilov, SM Kim Journal of Dynamical and Control Systems 2 (4), 449-483, 1996 | 98 | 1996 |